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Preface 
 
The present ad quadratum method of generating the regular polyhedra and their study 
was developed in the context of the design of the Millennium Sphere project.  
 
The Millennium Sphere was Cooper Union’s submission for an international time-
capsule competition sponsored by the New York Times Magazine.  The project was 
designed in the spring 1999 semester by Professors Jean Le Mée and Manuel Báez, along 
with a team of Cooper Union students.  The proposal was chosen as a finalist (honorable 
mention) and was included in an exhibition (Dec. 1, 1999-May 31, 2000) at the American 
Museum of Natural History in New York City.  It was featured in the New York Times 
Magazine (Dec. 5, 1999), and shown at the exhibition "Art and Mathematics 2000" at the 
Cooper Union (Nov. 7 - Dec. 15, 2000).  It is now on permanent exhibition at the 
Cathedral of St. John the Divine in Manhattan. 
 
The capsule itself was to have a capacity of between 8 and 27 cubic feet, be watertight, 
airtight and have as few seams as possible.  It had to be resistant to changes in 
temperature, corrosion and pressure.  The capsule was to contain a range of printed 
materials, photographs and artifacts chosen by the editors of the New York Times 
Magazine.  Each object would be individually wrapped and sealed in archival boxes and 
containers.  The capsule should be emptied of oxygen and pumped full of an inert gas 
such as argon before being sealed. 
 
The capsule was to protect its content for the next millennium.  It was suggested that the 
capsule be beautiful enough to be deemed worthy of preservation without at the same 
time attracting looters.  In any case it should be able to withstand rough treatment. 
 
The capsule had to be located somewhere in Manhattan either in a museum or on “sacred 
ground.” 
 
The technical details of the capsule design are available in the project proposal.  The 
design called for a sealed titanium sphere housed in the center of the Millennium Sphere.  
In fact, as explained in the booklet presenting the project and available on the web 
(http://www.cooper.edu/sphere.html), three such capsules were proposed, to be located 
one in the air, one in the earth, and the other in the crypt of a cathedral under an igneous 
rock, all next to the presence, symbolic or real, of water.  To fulfill its function of 
preservation for a thousand years, the capsule was included into a system that we called 
The Millennium Sphere or Ariadne’s Clew.  
 
The Millennium Sphere, also called Ariadne’s Clew, is a memory system to be situated 
in the Cathedral of St. John the Divine in Manhattan.  It is designed not only to hold 
selected material in a capsule to be opened in one thousand years as required, but to 
perpetuate the knowledge of the existence of the time capsule itself for all that period, 
since one of the misfortunes that befalls time capsules is that their location often gets to 
be forgotten.   
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The realization of the project results from the interplay of three fundamental elements: 
 

The millennium sphere proper, holding in its core the sealed material to be 
preserved for 1,000 years; 
A marker in the form of a labyrinth, to help the remembrance; 
A ritual to keep the memory alive. 

 
The capsule holds the past, the ritual the present, the marker the future.  
 
As holder of the past, the capsule design wants to be, through its structure and 
proportions, an embodiment of traditional knowledge such as found in sacred geometry.  
We thereby endow it (through this geometric design) with a high esthetic appeal, and 
capture the essence of some fundamental ideas, which have given birth to – or sustained 
throughout the ages – some of the most profound speculations in philosophy, science, and 
religion.  The container then becomes content, notwithstanding its payload.  It is at the 
same time symbolically evocative of the heavens and of the atom but also of Ariadne’s 
Clew, which she gave Theseus to help him out of the labyrinth. 
 
The design of the capsule is based on the inner geometry of the five platonic forms, 
exhibiting their evolution and growth.  What our ad quadratum ex-planation illustrates is 
the little-known fact that the entire geometry of the platonic forms results, like the 
Pythagorean musical scale, from the simple ratio of the first three integers governing the 
values of the angle of any two consecutive diagonals in each of the respective figures – 
The internal or Maraldi angle. 
 
From the generating diagram we see a whole compendium of ancient science springing to 
life:   
 

The construction of platonic forms and their evolution; 
The development of the labyrinth; 
The spiral of growth and the golden spiral; 
The Heliconic square and Pythagorean musical tuning; 
The determination of Pythagorean triples and many other wonders. 

 
The Labyrinth, marker of the site and image of the human condition, reminds us that our 
own Minotaur – personal and societal – lies at the center and needs to be dealt with. 
 
The ritual, link between sphere and labyrinth, between heaven and earth, keeps the 
memory alive.  Every fifty years, the sphere will be brought down to touch the labyrinth 
center – heaven on earth but also atom on earth – reminder of the possibilities and risks, 
of the promises and atonement marked by the Jubilee year. 
 
In the few weeks available during the course of the project there was no time to elaborate 
on the principles and the methods used in the design.  A more thorough presentation is 
now possible.  This possibility and the desire of many viewers to get acquainted with the  
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principles of design and the meaning of the Millennium Sphere has now prompted the 
present work which specifically addresses the geometry of the sphere.  It is therefore not 
a work of mathematical speculation on the platonic forms aiming at abstract generalized 
formulation but the reflections of a designer attempting to clarify in his own mind the 
intricate and beautiful connections existing in some apparently simple figures. 
 
What it brings out however is a “view from the center” that considerably simplifies and 
unifies the understanding of the structure of all regular polyhedra – convex and stellated – 
and integrates it quite naturally into a rich tradition of speculative thought be it 
geometrical, musical, astronomical or philosophical that has been part of our intellectual 
heritage for centuries.  
 
Similar efforts will be dedicated to the labyrinth and the ritual. 
 
Interested readers may view the project at http://www.cooper.edu/sphere.html 
 
Other studies and applications based on this work and pursued in collaboration with the 
“Form Studies Unit” at the Carleton University Center for Applied Architectural 
Research (CCAAR) in Ottawa will be subsequently issued. 
 
Voltaire has Candide say that each man should cultivate his own garden.  Though he may 
have a point, it is however in digging into my friend Manuel Báez’s Phenomenological 
Garden in search of our Millennium Sphere that stellated regular polyhedra started to 
grow on me as mistletoe on an apple tree.  Though those around me may at times have 
felt as if polyhedra were sucking away some of my substance or turning into a semi-
obsession, these wondrous figures have also provided a most interesting visual and 
intellectual experience.  Of course when it’s over the whole thing appears rather evident 
at a glance and one wonders why all this slugging into the underbrush of the garden!  It is 
somewhat like a labyrinth – to be explored anon – whose pattern is quite clear from some 
distance above but seems nothing but endless turns, u-turns and re-turns in the treading of 
it.  Ariadne’s clew is then the only clue for our reassurance. 
 
The hope here is that the interested reader may take our clues and gather the fruits 
without too much digging. 
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Ad- Quadratum Construction and Study of  
Regular Polyhedra 

 
As a geometer who fully concentrates  
In squaring the circle and succeeds not 
Pondering principles that he would need 
Such was I at that new sight: 
Wishing to see how image to sphere conformed 
And how one within the other found its place. 

 
- Dante, Paradiso XXX111 (133-138) 

 
Introduction: 
 
The Ad Quadratum method is a geometric construction for the platonic polyhedra based 
on the simple trigonometry of the internal (or Maraldi) angle, i.e., the angle between two 
consecutive diagonals in a regular polyhedron1.  This trigonometry is based on the ratio 
of the first three integers 1, 2, and 3.  For example, in a cube, the internal angle C  is such 

that cos

ˆ 
i

ˆ C i
1

3
 (fig. 1A.)  For the tetrahedron, cos ˆ T i

1

3
 (fig. 1B); For the octahedron, 

;  For the dodecahedron, sinsin ˆ O i 1 ˆ D i
2

3
;  and for the icosohedron, tan ˆ I i 2 . 

Through properties of duality, it is easy to show that the internal angle of one solid are 
related to the dihedral angle2 (fig. 1C) of its dual through simple relationships.  
 
Thus the dihedral angle of the cube C ˆ 

D
ˆ O i , the octahedron internal angle; conversely, 

the octahedron dihedral angle O ˆ 
D

ˆ C i   where C  is the cube internal angle.  
Analogous relationships obtain for all pairs of duals as we shall see later. 

ˆ 
i

 
The Ad-Quadratum method allows for easy compass and ruler construction of all regular 
polyhedra.  It yields much more as we shall establish:  from the construction of the 
Pythagorean triples, the gnomic golden rectangle series, the golden spiral, the exponential 
spiral, the tuning of the monochord, and much more.  All this based on “the little matter 
of distinguishing one, two and three” to use the words of Socrates in The Republic3. 
 
 

                                                           
1 i.e., those pairs of symmetry axes  passing through the center of the circumsphere and two adjacent 
vertices belonging to the polyhedron under consideration.  Mr. James Armstrong of London first drew my 
attention to the interest of the internal angles viewpoint. 
2  The dihedral angle is the angle between two intersecting planes (here the adjoining faces) measured 
between two lines contained in the planes and mutually perpendicular at a common point to the line of 
intersection.  On the other hand, the dual or reciprocal of a polyhedron is another polyhedron, the vertices 
of which are the centers of the faces of its dual and conversely.  Thus cube and octahedron, dodecahedron 
and icosahedron are duals of one another while the tetrahedron is its own dual, being self-reciprocating. 
3 Plato: Republic vii 522 
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Generation of the Platonic Forms: 
 
1. A view from the center 
 
To appreciate the richness of this method, we begin by considering the generation of the 
five platonic forms or regular convex polyhedra (fig. 2).  The symmetry groups or 
patterns of rotations and reflections inherent in these geometric forms are well known.  
Nevertheless, the viewpoint tends to remain external:  Solids bounded by regular 
surfaces4 - a view inherited no doubt from Euclid himself5. 
 
There are, however, other possible viewpoints useful to the designer:  either from a 
vertex, a face, or in our case, the center of the circumsphere common to the five regular 
convex polyhedra. 
 
The move is not unlike Copernicus’ bold step who sat himself on the sun and saw the 
complex ptolemaic universe dissolves into a well-ordered ballet of heliocentric orbits. 
 
Taking therefore a central, internal viewpoint, seating ourselves, so to speak, at the center 
of our polyhedral universe, we consider the symmetries generated for each platonic form 
by the radii issuing from the circumsphere center to two adjacent vertices respectively 
(fig. 3). 
 
These lines bursting from the center create by impact on the circumsphere the regular 
polyhedra.  They delimit within the volume of the sphere regular pyramids with 
triangular, square or pentagonal basis as the case may be (fig. 1A, 1B, 3).  Each of the 
platonic forms is constituted by a bunch of these pyramids (4 for the tetrahedron, with 
triangular basis; 6 for the cube, with square basis; 8 for the octahedron with triangular 
basis; 12 for the dodecahedron with pentagonal basis; and finally, 20 for the icosahedron 
with triangular basis), all with a common apex at the center of the circumsphere.  
Together they represent the only five possibilities of dividing Euclidian space equally. 
 
This view of the fivefold division of space allows for a new definition of regularity, 
which applies to both convex and stellated polyhedra, as we shall see later.6  
 
A polyhedron, convex or stellated, is regular if: 
 

1. all its vertices lie on a common sphere; 
2. the angles between any pair of consecutive radii joining the center of the sphere to 

the vertices (the Maraldi angle) are all equal. 
 

                                                           
4 That is why we prefer to use the word form to that of solid traditionally used because it is more suggestive 
of the dependence of the shape of the polyhedra on their internal structure rather than on their external 
appearances. 
5 See, for instance, Euclid’s account of the construction of the five platonic solids in T.L. Heath:  A Manual 
of Greek Mathematics.  Dover Pub. New York, 1963, pp. 251-254. 
6 See Polyhedra and Regularity – Infra, p. 43. 
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fig. 2

fig. 3
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…which can be more briefly put as: 
 
To be regular, a polyhedron must be spherical and equimaraldian. 
 
It will be convex if the network of lines (edges) projected on the sphere joining the 
vertices is locally planar (i.e., the segments between vertices do not cross).  It will be 
stellated otherwise. 
 
The well-known duality properties ensure that the vertex radius of one figure is the face 
center radius of its dual. 
 
2. Complementary views: 
 
Other viewpoints are, of course, of conceptual interest to the designer.  These methods of 
generation will be examined subsequently (See Alternative Methods of Generating the 
Platonic Forms).  We can mention here in passing, the generation of platonic forms as 
the result of the interference of the circumsphere with spheres of equal diameter 
distributed initially tangentially to the circumsphere along axes corresponding to the radii 
perpendicular to the face of the respective polyhedra and being pressed together from all 
directions. 
 
Another possibility yet is to start from the six directions of space at a point of origin (i.e., 
a Cartesian system of coordinates) and their afferent octahedron obtained by measuring 
equal distances along each axis.  Then, along each of these directions, consider another 
octahedron as in a crystal like structure, compressing them all towards the center at the 
origin, the interferences eventually generate a cube out of which the tetrahedron and the 
icosahedron can be generated by very simple construction yielding finally the 
dodecahedron. 
 
These methods of generation as well as others will be subsequently examined.  At the 
present moment, however, we want to concentrate on the internal view and its relation 
with the Ad Quadratum method of construction.  To this end, we begin by considering 
the convex polyhedra in relation to their common circumsphere. 
 
Platonic Forms and Circumsphere: 
 
The relationships between the radius of the circumsphere and the edge of the regular 
convex polyhedra have been known since Euclid at least.  Theatetus, in the 4th Century 
B.C. , is generally credited with the discovery7.  Designating by R the radius of the 
circumsphere common to all and by a the edge of the respective polyhedra we have: 

                                                           
 
 
 
7 See for instance T.H. Heath, Greek Mathematics, p. 106 and 134. Also, infra, Appendices: Circumradius 
and Edge Relationships. 



 6

 
  
 
 

fig. 4A

fig. 4B

fig. 5
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Tetrahedron:  Cube:   Octahedron: Dodecahedron:          Icosahedron: 
 

R
a 3 1 5

4
R

a

4
2 5 56

4
a

R 3
2
a

R 2
2
a

R

Ra 55
5
10a

3

3
5 1 RRa

3
32

Ra 6
3
2 Ra 2

 
  
We now proceed to show that the internal structure of the 5 regular convex polyhedra can 
be accounted for through the simple trigonometric ratios defined within the pyramids 
whose bases are the polyhedra faces and the apexes the center of the circumsphere. 
 
Cube:  
  
We begin with the cube, more familiar and easy to visualize. 
 
It will be seen that the cube can be considered as made up of 6 equal pyramids (fig. 4A) 
with square bases (the faces of the cube) and a common apex at C the meeting point of 
the diagonals and center of the circumsphere (fig.4B).  Let A and B be two contiguous 
vertices on the cube.  Then AB = a, the cube edge and CA = CB = R, with R=radius of 
circumsphere.  Let  A ˆ C B ˆ C i  be the cube internal angle.  Projecting ABC in true size, we 
obtain figure (fig. 5): 
 
Drop the perpendiculars CJ on AB and AH on of CB . 

Now consider sin
ˆ C i

2

a
2

R
   or  

a

2R
  .   But cos2A 1 2sin2 A    (Dwight 403.22)8 

  

 cos ˆ C i 1- 2 sin2
ˆ C i

2
   (1) 

2

2

2

2

2
1

4
21ˆcos

R

a

R

a
Ci

 

Now a
2 3R

3
   or   a2 4 3

9
R2 4

3
R2

 

 
 
 
 
 

                                                           
8 Dwight, H.B.:  Tables of Integrals and other mathematical data. The MacMillan Co. New York 1947 
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fig. 6

fig. 7
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 from (1)  cos ˆ C 1

4
3

R2

2R2 1
2

3

1

3
 

3
1ˆcos iC

 
 

Designate CH by x, then cos ˆ C i
x

R
   or  x Rcos ˆ C i      

 
So that if R=3, we have:   x=1. 
 
 
Tetrahedron: 
 
Passing to the tetrahedron, we can see by inspection that 
 

ˆ T i ˆ C i
 
 
This follows from looking at the cube containing the regular tetrahedron whose edges are 
the diagonals of the faces of the cube and is therefore circumscribed by the same sphere 
(fig.6). 
 
The Tetrahedron is ABCD, the cube AGBHCEDF.  O is the center of the circumsphere 
common to both.  Consider cube diagonal EB and the half diagonal AO.  They form a 
plane with A ˆ O E ˆ C i  and A ˆ O B ˆ T i . 
 
Since EB is a straight line through O it is seen that C ˆ 

i
ˆ T i , or T ˆ i ˆ C i . 

 

cos ˆ T i
1

3

It follows that   
 
  
Octahedron: 
 
The case of the octahedron is trivial in the sense that its internal angle O  is a right angle, ˆ 

i

ˆ O i
2

.  

 
 

sin ˆ O i 1 



 10

 

fig. 8

fig. 9
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Dodecahedron: 
 
For the dodecahedron, we proceed as for the cube calling in this case its internal angle 

, the angle between two consecutive diagonals.  These diagonals constitute the sides of 
a triangle, itself side of a pyramid with apex at the center of the circumsphere and having 
for base a regular pentagon, face of the dodecahedron. 

ˆ D i

 
Though neither equal nor similar, the isosceles triangle, face of the pyramid just 
described, has the same geometry as that for the cube previously examined (fig. 7).  We 
can therefore write: 

2

2
2

2
1

2

ˆ
sin21ˆcos

R

aD
D

i

i

 
 
Here, however:   
 

a
3

3
5 1 R          a2 1

3
6 2 5 R2  

and therefore:    
 

a2

2R2 1
5

3
 

 
or: 

cos ˆ D i 1 1
5

3

5

3
 

 
 
In triangle ACH we therefore have: 

AC R;   CH
5

3
R;   and  AH 2 AC2 CH 2

,  

or:  AH 2 R2 5

9
R2 R2 1

5

9
R2 4

9
      AH

2

3
R  ;   

where from    sin ˆ D i
AH

AC

2

3
 

 

sin ˆ D i
2

3
  
 
 
Icosahedron: 
 
Proceeding similarly for the icosahedron, we have: 

 cos ˆ I i 1 2sin2
ˆ I i

2
1

a2

2R2 ,  
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fig. 10
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 with  a
10

5
5 5R      a2 10

25
5 5 R2

 

 

a2

2R2

10

50
5 5

5 5

5
1

5

5
  

 

   cos ˆ I i 1 1
5

5

5

5
 

 
 

Again, in triangle ACH: AC R;   CH
5

5
R  

   AH2 R2 5

25
R2 R2 1

1

5

4

5
R2

 

 

AH
2 5

5
R  , 

 

 but  
AH

CH
tan ˆ I i

2 5
5

R

5

5
R

2 

 

 tan ˆ I i 2 .  
 
 
The internal angles of the five regular polyhedra can therefore be constructed very simply 
on the basis of right angle triangles.  To simplify the construction and deal with integers, 
as ancient mathematicians would prefer (rather than with fractions), we obtain the results 
shown on fig. 8. 
 
It now becomes possible to build the five regular polyhedra with compass and ruler and 
the simple measures 1, 2, and 3. 
 
Construction of the Polyhedra – Example of the Cube 
 
Before proceeding to the Ad-Quadratum construction we build a cube made up of 6 
square based pyramids with apexes at the center of the circumsphere and angle between 
two adjacent edges equal to C   (fig. 4B).  Each such a pyramid (fig. 9, repeated from fig. 
4A) is made up of 4 triangles as shown in fig. 8 (a). 

ˆ 
i

 
Six of these joined together with a common apex constitute a cube (figs. 3 and 10).  
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fig. 11

fig. 12
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A simple way of constructing each individual pyramid is to plot four times C  along a 
great circle of the circumsphere (fig. 11).  When cut and folded, we obtain the pyramid 
(including the arc of the great circle subtended by the cube edge).  Six such constructions 
will yield the cube. 

ˆ 
i

 
The Ad Quadratum Construction 
 
The Ad Quadratum construction begins with the construction of a double square each of 
side unity (fig. 12). 
 
We therefore begin with a circle of unit radius to which we add two intersecting and 
equal circles, centered at the extremity of a diameter, respectively, so as to form a double 
vesica.   The intersection of the center line and of the tangents to the circles with the 
secants through the 2 vesicas determine the double squares:  A B O G. 
 
It is on the basis of these two squares that the construction evolves (fig. 13).  Together 
they form a rectangle ABOG with sides equal to 1 and 2 respectively.  
 

   Diagonal GB 5 .   
 
We can already note in passing that tan A ˆ G B 2 
and  therefore that A ˆ G B A ˆ O B ˆ I i , the internal angle of the icosahedron. 
 
Now swing GB down in the extension of GA to point D.   

 
In triangle OGD, GD 5,  GO 2. 

 
Therefore DO 3. 

 
And therefore,  

G ˆ D O D ˆ O B ˆ D i  ,   
the internal angle of the dodecahedron, since  

sinG ˆ D O
GO

DO

2

3
 . 

 
Now describe the circle centered at O with radius OD and extend AB to S; OB to R and 
U; OG to V and OA to W, where these extensions intercept the circle. 
 
Then draw OS. 
 
It will be seen that in triangle BOS, 

cosB ˆ O S
1

3
  and  therefore   B ˆ O S ˆ C i , the internal angle of the cube. 
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fig. 13
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Similarly, cosU ˆ O S
1

3
,and therefore U ˆ O S ˆ T i

V ˆ O U

,  the internal angle of the tetrahedron.  

Finally,    
4

ˆ O i ,  

 the internal angle of the octahedron.   
 
Noting that    G ˆ D O D ˆ O R ˆ D i ,   
and     D ˆ G B W ˆ O R ˆ I i ,   
 
we see the internal angles of the 5 regular polyhedra displayed on the diagram together 
with the chords subtending these angles representing the edges of the respective 
polyhedra, and the circumscribing circle, the great circle of the circumsphere. 
 
We can also note as previously mentioned that the dihedral angles of the respective 
polyhedra can be read off this graph directly in virtue of the duality principle. 
 
The dodecahedron and the icosahedron being dual of one another, it follows that the 
angle between the perpendiculars to two adjacent faces of the dodecahedron is the 
internal angle of the icosahedron.  (Note that the circles in figures 14 through 17 are not 
on the circumsphere, though they are on spheres concentric with it.  They lie in planes 
perpendicular to an edge of the respective polyhedra.) 
 
 

 ˆ I i ˆ D D ,  
 

 or:     ˆ D D
ˆ I i  

 
 
The dodecahedron dihedral angle ˆ D D  is the supplement of the icosahedron internal angle 
ˆ I i . 
 
Conversely, the angle between the perpendiculars to two adjacent faces of the 
icosahedron is the internal angle of the dodecahedron. 
 

   ˆ I D ˆ D i ,  
 

or ˆ I D
ˆ D i  

The icosahedron dihedral angle D  is the supplement of the dodecahedron internal angle ˆ 
i

ˆ I D . 
 
The same will obviously obtain for the cube and the octahedron. 
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ˆ C D ˆ O i
2

 

The cube dihedral angle C ˆ 
D  is equal to the octahedron internal angle O   ˆ 

i

 

               O ˆ 
D

ˆ C i  
 

But, as we have seen previously in connection with fig. 6,  
 

   T ˆ i ˆ C i   
 
So that we can also conclude 
 

        O ˆ 
D

ˆ T i  
 
The octahedron dihedral angle is therefore equal to the supplement of the internal angle 
of the cube C  and to the internal angle of the tetrahedron T .  ˆ 

i
ˆ 

i

 
The tetrahedron being its own dual, we consider the relation between T ˆ D  and T .  We see 
that (fig. 18): 

ˆ 
i

ˆ T D ˆ T i . 
 
But we previously established that 

ˆ T i ˆ C i   T ˆ D ˆ C i  
 
The tetrahedron dihedral angle T ˆ D  is the supplement of its internal angle T , and is also 
equal to the cube internal angle. 

ˆ 
i

 
We can therefore establish the following table: 
 
Form Trigonometric 

Ratio 
Internal Angle Dihedral Angle 

Tetrahedron 
cosTi

1

3
 47.109iT  53.70iD CT  

Cube 
cosCi

1

3
 53.70iC   CD Oi 90o  

Octahedron sinOi 1  Oi 90o  47.109iiD CTO

Dodecahedron 
sinDi

2

3
 81.41iD  56.116iD ID  

Icosahedron tan I i 2  44.63iI  19.138iD DI  

 
Although the information regarding the dihedral angle is not required for the construction 
of the polyhedra, it is included here for the sake of completeness and to serve as a 
verification of their construction. 
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As indicated for the cube (fig. 10 and fig. 11), we can now proceed with construction of 
each regular polyhedra. 
 
Thus the tetrahedron will be made up of four pyramids (fig. 19A) built from the 
development shown (fig. 19B). 
 
For the cube, as already seen, we have 6 pyramids (fig. 20A) with the following 
development shown (fig. 20B).  (Repeats of fig. 10 and 11 respectively). 
 
The octahedron will be made up of 8 pyramids (fig. 21A), developed as shown: (fig. 21B) 
 
The dodecahedron will have 12 pyramids (fig. 22A) developed as shown (fig. 22B): 
 
Finally, the icosahedron will be made up of 20 pyramids (fig. 23A), with the 
development as shown: (fig. 23B) 
 
 
The Challenge of Abul Wefa 
 
Abul Wefa was a tenth century Islamic philosopher9 credited with “the feat of drawing all 
five Platonic solids using only a straightedge and a pair of compass at a fixed setting.”  
Such fixed compasses (known as “rusty” compasses), adds Hersey10, have been the tools 
of virtuoso geometrical draftsmanship in many periods.  
 
We would like to show here, without laying claim to virtuosity eleven centuries after 
Abul Wefa, that our Adquadratum method can easily be modified to accomplish the deed. 
 
We’ll consider having met the challenge if we can draw the adquadratum diagram with a 
“rusty” compass and a straightedge only. 
 
We begin by tracing a line xy with the straightedge (fig. 24A).  Setting our compass 
opening at R, radius of the circumsphere common to all the regular forms, we then 
proceed by drawing four intersecting circles whose centers O  are on line xy and 
the circumferences of their neighbors as shown on fig. 24A.  The three vesicas determine 
both a square ABCD of side equal to the circle diameter and the median EF of the square 
to which we add diagonals AC and BD and square EHFG. 

1,O2,O3,O4

 
Now, draw IJ (it passes through O ) and join  and  cutting GE and GF at K and 
L respectively.  Join KL cutting XY at M.  Call center point of square ABCD, . 

2 AO2 DO2

O5

 

Then      MO5

2

3
GO5  

                                                           
9 George L. Hersey:  Architecture and Geometry in the Age of the Baroque, Chicago U.P. 2000, p. 88 
10 Hersey, op. cit. p. 88 
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fig. 24A

fig. 24B
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or      MO5

2

3
R  

so that if we (arbitrarily) set R=3, MO5 2.  This is easily established through similarity 
of triangles and is a standard construction for the harmonic series (see Adquadratum & 
Music, Infra.).   
 
Now, repeat a similar construction along EF, i.e., draw NP cutting EF at Q.  Then join G 
to Q and H to Q, cutting DB and AC at S and T respectively. 
 
ST cuts EF at U. 
 

Then      O5U
1

3
O5F  

or      O5U
1

3
R  

again with R=3, O . 5U 1
 
Now with the same “rusty” compass opening (fig. 24B), draw circle centered at O .  It is 
inscribed within square ABCD.  Extend ST on both sides so that it cuts circle O  at V .  
On the left, it passes through L; O L extended cuts the circumference at V  and KL 
extensions will cut it at V . 

5

5 1

5 2

3

 
Join  .,,,, 1321 EGEVFVFVFV

 
These are the edges respectively of: 
The cube, the icosahedron, the dodecahedron, the tetrahedron, and the octahedron.  Each 
of them subtends the central angle that is the internal angle of the corresponding 
polyhedron. 
 
Abul Wefa challenge has therefore been met. 
 
Ratio of Insphere to Circumsphere Radii 
 
We take the circumsphere to be common to all five regular convex polyhedra. 
 
The insphere is that sphere concentric with the circumsphere but tangent to the faces of a 
given polyhedron.  Inspheres will therefore be generally different for the various 
polyhedra, though simple relations can be shown to exist between the radii of both 
spheres for each of the polyhedra: 
 
 
Let R be the radius of the circumsphere. 
       r be the radius of the inspheres 
       a be the edge of the   polyhedra 
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fig. 25A
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Tetrahedron: 
 
For the tetrahedron, as is well-known:  

a
2

3
6R  and  r

a

12
6 , 

so that 
r

R

2 6

3 12

1

3
; 

and we note that  
1

3
cos ˆ C i    

r

R
 cos ˆ C i . 

 
Note also that when R = 3 (as in our Ad Quadratum construction), r = 1; 
 
While the height of the tetrahedron given by  

h
a

3
6

2

3
6R

6

3

2 6

9
R

4

3
R  

 
So that for R = 3, h = 4. 

 
Having started with 1, 2, and 3, we find 4 and with it, the 3rd Dimension.  Socrates would 
be pleased! 
 
Cube: 

 

 

R
a

rRa
3
3

2
  and  

3
32

 

 

iC
R

r ˆcos3
3
3

  

 

noting that 
3

2
cos

6
, 

 

 
r

R
2cos

6
cos ˆ C i  

 
 
Octahedron: 
 

2Ra
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fig. 25B fig. 26

fig. 27
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r

R

3

3
3cos ˆ C i  

r
a

6
6

R 2 6

6

R 12

6

2 3

6
R

 

2cos
6

cos ˆ C i  

 
The cube and the octahedron having a common circumsphere have also a common 
insphere, and for R=3, r 3 . 
 
Dodecahedron: 
 
Rather complex formulae exists for the dodecahedron.  As can be found in handbooks: 
 

a
3

3
5 1 R      and     r

a

4

50 22 5

5
. 

 
 
It is, however, possible to derive a simpler formula based on the knowledge of the 
internal angles. 
 
In a dodecahedron, the centers of the 12 pentagonal faces are at the corners of three 
mutually perpendicular golden rectangles (fig. 25A and 25B). 
 
The same obtains for the vertices of the icosahedron11 (fig. 26).  As we previously saw, 
we have (fig. 27): 
 
In the elevation view,    OA R . 
 

   OA A   (projection of OA on vertical) 

    OA A R cos
ˆ D i
2

.   

   In side view, OB r OA A cos
ˆ I i

2
 

     
r

R
cos

ˆ D i

2
cos

ˆ I i

2
 

 
 
Calculation using this formula gives, to the third decimal: 
 

                                                           
11 Huntley, H.E.:  The Divine Proportion, pp. 34-33, Dover, NY  1970. 
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fig. 28
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794.0
R

r

 
 
The more complex formula stated previously yields the same result: 
 

794.0
R

r

 
The advantage of our formula, besides its simplicity of form and derivation, has the 
added advantages of relating the ratios of the radii to the inner structure of the 
polyhedron. 
 
Icosahedron: 
 
Here also, a simple derivation based on the internal angle can be obtained by simple 
inspection. 
 
The handbook formulae are: 
 

a
10

5
5 5R     and     r

a

2

7 3 5

6
 
 
Again, referring to figure 26, it is seen, as we previously explained, that the vertices of 
the icosahedron are at the corners of 3 mutually perpendicular golden rectangles.  This 
time, therefore, R, the radius of the circumsphere, is the half diagonal of one of the 
golden rectangles. 
 
Considering the plane of such a golden rectangle, we have from the geometry of the 
figure: (fig. 28) 
 

a = edge of icosahedron = BC, CD a ,  where   is the golden ratio 
1 5

2
 

R = circumradius = OB 
 
r = insphere radius = OH perpendicular from O, center of sphere to triangular face of 
icosahedron. 
 
The other needed measurements appear on the figure.   
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fig. 13
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Now, consider triangles AA HO  and  AA BJ ,  where A A is the point view of line AA’, 
simplified to A in the following: 
 

AO

AB

HO

BJ
 

 
or, replacing by the values indicated on the figure 
 

a

a

2

r
a

      
r

a

 
But in BJO,  

 

Rcos
ˆ I i

2

a
 

 

  
r

R cos
ˆ I i
2

 , 

 

or: 
r

R
cos

ˆ I i

2
 

 
Now referring to the initial adquadratum construction diagram (fig. 13), and considering 
triangle  D  we can write:  
 

cos ˆ D i
O

OD

2 1

3
. 

And making use of the identity cos
A

2

1

2
1 cos A , 

 

we have: cos
ˆ D i

2

1

2
1

2 1

3
 

 

3

1

3

22

2

1

 
 
But, from the well-known identity 1  
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fig. 28
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2

ˆ
cos  iD

 
 
We can therefore rewrite the ratio of circum- to inradii as: 

2

ˆ
cos

2

ˆ
cos

ii ID

R

r

 
 
  
Which is precisely the formula derived earlier for the dodecahedron, confirming 
Apollonius remark12 that both dodecahedron and icosahedron having a common 
circumsphere have also a common insphere. 
 
From fig. 28, it can also be seen that we can write in triangle BJO: 
 

cos
ˆ I i

2

a

R
 ; with R

a2

4

a2 2

4

a

2
1  

 

cos
ˆ I i

2
 

 
It follows that  
 

        
r

R
cos

ˆ D i

2
cos

ˆ I i

2
  

 
1

 

 
 
or, since  

3

1

R

r

 
(numerically 0.794 as found before.) 

                                                           
12 Heath, T.H., op. cit. p. 254 
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fig. 5
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Ratio of Intersphere to Circumsphere Radii 
 
Besides the insphere just described, another sphere can be considered in relation to the 
platonic polyhedra -–the intermediate sphere or intersphere13.  This sphere is defined by 
the midpoints of each edge of a platonic polyhedron, marking the intercept of 
interpenetrating duals. 
 
The radius of this intersphere can be readily calculated for each polyhedron. 
 
Let  ri  be the radius of the intersphere. 
 
Referring to fig. 5, which applies to all the regular convex polyhedra, and represents one 
of the lateral faces of the pyramids making up each polyhedron, it is seen that the radius 

of the intersphere will be CJ and in all cases, CJ ri R cos
ˆ C i

2
 ;  where here 

ˆ C i

2
 is half 

the internal angle of a particular polyhedron. 
 

From the identity cos
A

2

1

2
1 cos A   we therefore obtain for each polyhedron, in 

turn: 
 
Tetrahedron: 

3

3

3

1

3

1
1

2

1

2

ˆ
cos

ii T

R

r

 
 
Cube: 

3

2

3

1
1

2

1

2

ˆ
cos

ii C

R

r

 
 
 
Octahedron: 
 

ri

R
cos

ˆ O i

2
    

 
but  sin ˆ O i 1 cos ˆ O i 0   

 

                                                           
13 Kappraff, Jay:  Connection, McGraw-Hill, Inc., New York, 1991, p. 266. 
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and  cos
ˆ O i

2

1

2
1 0

1

2

2

2
 

 
 
Dodecahedron: 

ri

R
cos

ˆ D i

2
 
As previously established,  
 

        with 
1 5

2
  

  ri

R

1 5

2 3

1 5 3

6

 

 
Icosahedron: 
 
Making use of previous results, we can write: 

         
ri

R
cos

ˆ I i

2
 

 
 
Ratio of Insphere to Intersphere Radii: 
 
Finally we can also establish the ratio of the insphere radius r to the intersphere radius ri,  
r

ri
  for each polyhedron,  

since 
r

ri

r
R
ri

R

 

 
Tetrahedron: 

r

R
cos ˆ C i

1

3
;    

ri

R
cos

ˆ T i

2

3

3
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r

ri

cos ˆ C i

cos
ˆ T i
2

1
3
3

3

1

3

3

3
0.577

 
 
 
 
 
Cube: 

r

R
3 cos ˆ C i

3

3
;     

ri

R
cos

ˆ C i

2

2

3
 
 

r

ri

3 cos ˆ C i

cos
ˆ C i
2

3
3
2

3

3

3 2

1

2

2

2
0.707

 
 
 
 
Octahedron: 
 

r

R
3 cos ˆ C i

3

3
;   

ri

R
cos

ˆ O i

2

2

2

1

2
 

 
 

r

ri

3
3
2

2

2

3
0.816 

 
 
Dodecahedron: 
 

   
r

R
cos

ˆ D i

2
cos

ˆ I i

2

1

3
  ;  

ri

R
cos

ˆ D i

2
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r

ri

2 1

3
1

0.850 

 
 
Icosahedron: 
 

r

R
cos

ˆ D i

2
cos

ˆ I i

2
  but   

ri

R
cos

ˆ I i

2
 ;   

so that:    
r

ri
cos

ˆ D i

2
 ;   

and, as previously established we have  

cos
ˆ D i

2
   

r

ri
0.934  

 
As an effect of the duality principle we can see that  
 

for the tetrahedron 
ri

R

r

ri

1

3
cosCi cos

Ti

2
 

 
for the cube and the octahedron 

ri

R cube

r

ri
oct.

2

3
sinDi cos

Ci

2
 

 

and 
ri

R oct.
r

ri
cube

1
2

1
tanIi

ctnI i cos
Oi

2
 

 
for the dodecahedron and the icosahedron 

ri

R doc.

r

ri
icos. 3

cos
Di

2
 

 

and 
ri

R icos.

r

ri
doc. 2

cos
I i

2
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Comparison with Orthoscheme Approach: 
 
Schläfli14 established general formulae giving the ratio between the radii of these spheres 
based on the study of the decomposition of the polyhedra in orthoschemes which are 
oppositely congruent tetrahedra making up our pyramids.  The decomposition is made 
along the axis of the pyramid giving as many orthoschemes as sides to the face of the 
polyhedron under study.  Furthermore, the four faces of these tetrahedra are right 
triangles, and the lengths of the three edges meeting at the polyhedron center are radii of 
the circumsphere, insphere, and intersphere respectively. 
 
Such an orthoscheme is shown for the cube in fig. 29: 
 
OR

  Radius circumference   = R 
 
2R

   =   radius insphere   =   r 
 
1R

   =  radius intersphere  =   ri  
 
 
Schläfli formulae are: 

fig. 29 

cos
0103

0003

1R

0R cos
p

cos
q

    OR esin
q

csc
h

 

 
 

cos
0203

0103

2R

1R csc
p

cos
q

    1R e cos
p

csc
h

 

 
 

cos X
0203

0003

2R

OR cot
p

cot
q

    2R e cot
p

cos
q

csc
h

 

 
 
Where e is the semi edge length of the platonic polyhedron 
h is the number of lengths into which a great circle is divided by an edge 
q is the number of incident edges at a vertex 
p is the number of edges around a face 
 
They naturally give exactly the same numerical results on those we have established. 
 
For example, for the tetrahedron, we have 
 
p=3, q=3 

                                                           
14 Kappraff. Op. Cit. p. 287 
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fig.  31AFig. 30
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1R

OR

ri

R
cos

3
csc

3
cos60o csc 60o

 

1

2

2

3

3

3
 

 
as previously found.  Note however that the thinking remains palpably “solid” rather than 
“structural,” i.e., in terms of surfaces and volumes rather than radially from the center. 
 
 
Polyhedra & Regularity 
 
Intuitively, a polyhedron can be naively defined as a three-dimensional region of space 
totally enclosed by a set of plane figures.  If these plane figures are regular polygons (i.e., 
having all sides and all angles equal), the polyhedron is regular.  Only triangles, squares 
and pentagons can give rise to regular polyhedra.  For stellated polyhedra, we can add the 
pentagram or five-pointed star (fig. 30). 
 
However, both the concepts of polyhedron and regularity have evolved with time.  Some 
modern definitions of polyhedra are such that stellated polyhedra for instance are 
excluded15.  The ancients seem to have thought of polyhedra as solids bounded by 
polygons.  This appears also to be the case for Descartes (1596-1650) and other 
mathematicians such as Legendre (1752-1834).  Judging from his drawings (fig. 31A), 
Kepler (1571-1630) seems to have thought of them as hollow surfaces.  Cauchy (1789-
1857) regarded them as potentially flexible deformable surfaces. 
 
A more modern approach, often better suited to the interests of designers and structural 
engineers, takes a more topological view.  Having perhaps its roots in the Renaissance 
drawings of Leonardo (1452-1519) (fig. 31B) and Wentzel Jamnitzer (1508-1585) (fig. 
31C and 31D), it looks upon polyhedra as skeletons, considering as fundamental the 
relationships between edges rather than faces. 
 
For our purpose, limited to the study of regular convex and stellated forms of potential 
utility in our design, an intuitive approach that selectively uses surfaces, volumes and 
topological approach seems best as long as it remains consistent.  Our goal is more to 
look for the structurally useful rather than the mathematically all-encompassing for its 
own sake. 
 
We alluded to a definition of regularity at the beginning.  Again, as the definition of 
polyhedron, the concept of regularity has evolved over time.  From Euclid down, 
regularity has involved equality of faces and faces being polygons with equal sides and 
angles.  But this conception of regularity is incomplete.  A case in point is that of the five 
so-called deltahedra, made up of congruent equilateral triangles as shown in fig. 31E. 
  
                                                           
15 Peter Cromwell:  Polyhedra.  Cambridge U.P., 1999, p. 209. 
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fig. 31C fig. 31D

fig. 31E
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They are not what is generally thought of as regular.  The implicit assumption in Euclid’s 
and subsequent definitions of regularity is that, to be regular, a polyhedron must be 
inscribable within a sphere, or alternatively, that the same number of faces will meet at 
each vertex. 
 
Cromwell16 cites as modern definition of a regular polyhedron one whose faces and 
vertex figures17 are regular polygons.  He also shows that if P is a convex polyhedron 
whose faces are congruent regular polygons, the following statements about P are 
equivalent: 
 

1. All vertices of P lie on a sphere. 
2. All the dihedral angles of P are equal. 
3. All the vertex figures are regular polygons. 
4. All the solid angles are congruent. 
5. All the vertices are surrounded by the same number of faces. 

 
A definition of regularity, which requires neither convexity nor the explicit statement 
regarding equal regular faces, is H.S.M. Coxeter’s18: 
 
A polyhedron is regular if it has a circumsphere, an insphere and an intersphere. 
 
We would like to propose here another definition of regularity, which also requires 
neither convexity nor explicit statement concerning faces regularity.  Our definition is 
that outlined on p. 3, namely that to be regular, a polyhedron must be spherical and 
equimaraldian. 
 
As we shall establish, convex and stellated polyhedra have the same vertices and the 
same Maraldi angles. 
 
A polyhedron will be convex if the network of lines (projections of the edges onto the 
sphere) joining a vertex to its most immediate equally distant neighbors is locally 
planar19 and no other connection exists between any vertex and any other except to its 
immediate neighbors.  It will be stellated if this network of lines connects non-immediate 
neighbors.  It is then locally non-planar, so that lines do cross. 
 
Stellated Polyhedra 
 
Plato and the ancient world knew the 5 regular convex polyhedra.  Euclid’s Elements 
concludes with a proof that there were in fact only five. 
                                                           
16 P. Cromwell, op. cit. p. 77 
17 A vertex figure is the spherical polygon seen after scooping out the intersection of faces surrounding a 
vertex with a small sphere centered on that vertex. 
18 Quoted by Cromwell, op. cit. p. 77. 
19 Meaning that the segments between vertices do not cross.  By “locally” we mean that the distance 
measured around a vertex, of at least two edges.  More precisely, perhaps, because it seems paradoxical to 
speak of planar network on a sphere, the spherical surface involved in our locality must remain open (i.e., it 
cannot involve the whole entire surface of the sphere). 
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fig. 32A

fig. 32B
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Kepler (1571-1630) discovered in 1611 two regular stellated polyhedra.  A stellated 
polyhedron is one in which either the faces or the vertices are star-shaped, as in the 
pentagram or five-pointed star.  Such polyhedra are non-convex (i.e., they are concave).  
Convexity and non-convexity have been defined in the preceding section. 
 
Kepler’s discovery concerned the two regular star-faced polyhedra.  Louis Poinsot (1810) 
rediscovered them and discovered in addition the two star-shaped vertex polyhedra.  
Cauchy (1811) proved that there are no regular star polyhedra other than these four 
bringing the total number of regular polyhedra to nine altogether. 
 
Stellated polyhedra are obtained by extending the face planes (or the edges) of the 
platonic polyhedra.  In the case of the tetrahedron and of the cube, no new regions of 
space are enclosed by the extensions.  However, by extending the faces of the 
octahedron, eight regular tetrahedra will be formed on each of the faces of the 
octahedron.  Their regularity is ensured by the symmetry of the figure.  Together with the 
original octahedron, they constitute two large tetrahedra interpenetrating one another (fig. 
32A).   
 
This is the stella octangula of Kepler.  Though sometimes referred to as the stellated 
octahedron, it is not however a regular stellated polyhedron.  Being made up of two 
tetrahedra, it is simply a compound polyhedron rather than a new regular stellated 
polyhedron with its new features and properties.  It corresponds in space to the pseudo-
star-hexagon or shield of David in the plane and is therefore a sort of three-dimensional 
star of David. 
 
We shall briefly study it here for its historical importance and its relation with the ad 
quadratum method. 
 

1. Stella Octangula: 
 

Only the apexes of the two tetrahedra are considered vertices of this new figure, not the 
intersections at mid-point on the edges.  The faces of the stella octangula are therefore the 
faces of the two interpenetrating tetrahedra, though for practical purposes, particularly 
when building models, the faces of the small tetrahedra formed on the faces of the 
original octahedron can be so considered. 
 
The stella octangula is obviously inscribable into the cube that is the dual of the original 
octahedron where the vertices of the octahedron are the center points of the cube faces, 
the two tetrahedra edges being the diagonals of the cube faces (fig. 32B).  The geometry 
of the stella octangula will be determined by that of the external pyramids affixed, so to 
speak, onto the faces of the octahedron. 
 
Note that the circumsphere of the original octahedron is the intersphere of the two 
tetrahedra resulting of the extension of the face planes of the octahedron. 
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fig. 33

fig. 34
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We shall now determine the diameter of the circumsphere of the new figure and the side 
of the cube circumscribing it. 
 
A top view of the stella octangula (fig. 33) shows that the edge of one of the typical 
pyramids (OC) is equal in length to the edge of the original octahedron(DE).  Therefore 
the construction of the pyramids is straightforward.  From the Ad Quadratum diagram 
measure a, the edge of the octahedron.  Draw a circle (fig. 34) of radius a and measure a 
with a compass along the circumference three times.  Draw chords and radii to obtain a 
half hexagon.  This is the development of the pyramid.  Cut out and fold.  Repeat the 
operation 8 times (one for each pyramid).  They can now be assembled to form the stella 
octangula. 
 
 
Referring to fig. 33, if DE=a is the edge of octahedron, the edge of pyramid OC also 
equals a, then the edge of circumscribing cube is  
 

AB AO2 OB2 2a2     
 

AB a 2  
 
Therefore, the circumsphere radius which is half the cube diagonal will be:  

                                                
AB

2
3

a 2

2
3 a

3

2
 

 
The relationship between dihedral angles of the stella octangula and the original 
octahedron can readily be written. 
 
We have:    ˆ O D

ˆ C i

                 ˆ T i
 
 
and    ˆ T D

ˆ T i      ˆ T D
ˆ O D     

 
or     ˆ O D

ˆ T D  
 
 
 

Of course, the stella octangula can also be constructed from two intersecting internal 
tetrahedra. 
 
 

2. The Process of Stellation 
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fig. 35A

fig. 35B
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The stellation process is one whereby stellated forms arise from convex forms.  The 
process can originate from either face or edge extension.  As we have seen, it only applies 
to the dodecahedron and the icosahedron since tetrahedron and cube do not enclose new 
spaces through extension and that the octahedron only gives rise to a compound (the 
stella-octangula). 

 
Due to the principle of duality, the outcome of the extension of the dodecahedron and 
the icosahedron will alternate so that a particular figure may be said to have as kernel, 
or seed, either of these polyhedra depending on the starting point. 
 
We want to restrict our study to that of regular stellated forms.  The stellation process 
gives rise to many other forms besides the regular ones.  There are, for example, 59 
varieties of icosahedral stellations.20.  The four regular stellated polyhedra, the only 
possible ones (Cauchy), allow however a number of different viewpoints, some easier 
to visualize, some easier in model making, some easier for purposes of structural 
analysis. 
 
The process of stellation can also be visualized directly in three-Dimension as one of 
addition of volumic cells such as pyramids onto the surfaces of the convex polyhedra.  
Of course, for the resulting figure to be regular, the only cells that can be added are 
those whose edges or faces are themselves extensions of the kernel polyhedron (edges 
or faces).  Though it is not therefore really another method of stellation, it constitutes 
a convenient visualization and conceptualization tool. 
 
We shall briefly consider the surface and edge extension process and their afferent 3-
D approach to start with.  However, most of our attention will be given to the process 
resulting from the dodecahedron and icosahedron common internal structure of three 
mutually perpendicular golden rectangles, since it is directly related to the concept of 
internal angle and our adquadratum method. 
 
(a) Face Stellation21 
 
Except for the tetrahedron, the face-planes of the regular convex polyhedra come in 
parallel pairs.  But since only the dodecahedron and icosahedron generate regular 
stellated forms, we consider these two only.  If one of the faces in one of the parallel 
pairs is chosen as base and the other as top, a regular star polyhedron will be the 
result of other faces extension forming a regular polygon in the plane of the base or 
top.  For this, these other faces must be arranged symmetrically around an axis 
through the top and base center. 

                                                           
20 The Fifty-nine Icosahedra, by J.F. Petric, H.T. Flather, H.S.M. Coxeler, and P. Du Val, U. of Toronto 
Press, 1951. 
21 We follow here P. Cromwell op. cit. pp. 260-280. 
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fig. 35B(d)

fig. 35B(e)

fig. 35B(f)



 51

 
i. Case of the Dodecahedron 
The faces of the convex dodecahedron can be divided into four groups:  top, 
base, and the five faces adjacent to top and base respectively.  Top and base 
being parallel do not meet.  The five faces adjacent to the top are disposed 
symmetrically around the center of the top.  Their extension cut the plane of 
the top to form the pentagram fig. 35A(a).  Since any face can be chosen as 
top, twelve such pentagrams will result.  They contribute the faces of the 
small stellated dodecahedron (SSD).  This is the first step in the stellation 
process of the dodecahedra.  If now the faces of the group adjacent to the base 
are extended, a pentagon circumscribing the pentagram, (fig. 35A(b)) just 
determined will first result and then a new pentagram (fig. 35A(c)).  The 
pentagon (twelve of them altogether) is a face of the great dodecahedron (GD) 
while the pentagram is a face of the great stellated dodecahedron (GSD) 
 
ii. Case of the Icosahedron 
The case of the icosahedron is more complex from this view point since the 
faces will form eight groups:  top, base, and the three faces adjacent to the top 
(i.e., having a common edge with a top) are three such groups (a total of 5 
faces); followed in succession by the group of three faces adjacent to the base 
(total 8); the group of three faces adjacent to the right and the group of three 
faces adjacent to the left of the faces themselves adjacent to the base, 
respectively (total 14); finally, the two groups of three faces symmetrically 
disposed with respect to the top (total 20). 
 
Obviously, with so many groups, many possibilities arise (59 in fact, as 
previously mentioned).  Fig. 35 B shows some of the polygons arising from 
some of these groups.  But out of all these possibilities, only one (fig. 35B(c)) 
gives rise to a regular stellated form:  The great icosahedron (GI).  Fig. 35B(a) 
gives a regular convex icosahedron while fig. 35B(b) will yield a compound 
of five tetrahedra (fig. 35B(d)). 
 
The pattern of lines on the planes of the face generated by the cutting planes 
from the other faces determines a stellation pattern.  These for the 
dodecahedron and the icosahedron are shown on fig. 35B(e) and 35B(f) 
respectively. 
 
b) The Three-Dimensional Approach 
More intuitive perhaps though less general, we shall use this approach when 
visualizing the construction of the stellated forms.  It can be extended to 
include the inner (or Maraldian) pyramids that constitute the convex 
polyhedra built through the adquadratum method.  Thus, each stellated  form 
can be seen as made up of dipyramids regularly distributed along Maraldi 
radii clustered around the center of the whole form. 
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SSD
fig. 35C

  
 
  
  

GD
fig. 35D

GSD
fig. 35E

fig. 35F
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These dipyramids in turn can be divided into sets of oppositely congruent tetrahedron 
similar to Schläfli’s orthoschemes22.  The case of the SSD (fig. 35C) is straightforward:  
pentagonal pyramids base to base divided by planes passing through the pyramids apexes 
and the vertices of the common pentagonal base. 

 
For the GD (fig. 35D), it may be easier to consider the dipyramids as made up 
of a positive pyramid, part of the internal structure of the enveloping convex 
icosahedron and a negative pyramid representing a dimple. 
 
The GSD (fig. 35E) will have the same internal pyramids as the GD, and an 
external pyramid with triangular basis built on an enveloping convex 
icosahedron. 
 
The GI (fig. 35F) is somewhat more complicated.  The dipyramids of its 
structure as made up of 12 pentagrammal external pyramids, base to base with 
the 12 pentagonal internal pyramids of a convex dodecahedron with, for each 
dipyramid, a set of five negative dimples to subtract from the internal 
pyramid. 
 
All these forms are easily divided into orthoschemes.  The geometry of the 
pyramids and dimples being known, formulas similar to Schläfli’s can be 
derived for the stellated forms. 

  
 

3. The Four Regular Stellated Polyhedra 
 
We now proceed to the study of the regular stellated polyhedra.  We start therefore from 
the regular convex dodecahedron and the icosahedron.  Lengthening the edges of the 
dodecahedron till they meet gives rise to the small stellated dodecahedron (fig. 35C).  
This is the first step in the stellation process previously described (fig. 35A(a)).  This 
figure can be visualized as a regular dodecahedron on the faces of which pentagonal 
pyramids would be attached.  Generally attributed to Kepler, its image can however be 
seen in a marble marquetry design in the Basilica San Marco, Venice (fig. 36).  This 
design, dated 1425-27, is ascribed there to Paolo Uccello, monk and geometer friend of 
Leonardo da Vinci.  Having 12 faces (the intersecting pentagrammal stars), it justifies its 
dodecahedral name23, in spite of its 20 vertices relating it with the icosahedron.   
 
If the 12 vertices (apexes of the pyramid) are joined together, we obtain the figure of the 
regular convex icosahedron enveloping, so to speak, the small stellated dodecahedron.  If 
the process of expansion of the edges (or faces) is continued, enveloping dodecahedra 
and icosahedra will keep alternating in an ever-expanding pulsation of growth.  This 
process of growth obeys a geometric progression, as will be shown in section 4. 
 

 
22 Kappraff, op. cit. p. 287ft. 
23 These names of the stellated polyhedra were introduced by the British mathematician Arthur Cayley in 
1859. 
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If the faces of the pyramids on the small stellated dodecahedron are extended, the gaps 
between the pyramids are eliminated and a trihedral dimple fills the gap between 3 
consecutive pyramids.  This corresponds to the second step of the stellation process (fig. 
35A(b)).The resulting figure is the great dodecahedron (fig. 35D).   
 
In this case the 12 intersecting pentagonal faces are highly visible as backplates to the 
three dimensional stars.  We now continue with the enveloping icosahedron.  This is the 
third step in stellation (fig. 35A(c)).  Expanding the edges will give in the first step what 
is known as the great stellated dodecahedron (fig. 35E).  It can be visualized as the 
original icosahedron on the faces of which, triangular pyramids would be attached.  It has 
therefore 20 vertices (as the convex dodecahedron).  If these vertices are joined together, 
we obtain the enveloping regular convex dodecahedron.  As will be made clear 
subsequently, it has 12 faces made up of pentagrams. 
 
Again, if the expansion process is allowed to proceed, the icosa-dodecahedric alternating 
growth pulsation will continue ad infinitum.  Here the process of growth obeys a 
geometric progression of ratio 3. (see p. 77) 
 
If the faces of the icosahedron (fig. 37A) are extended rather than the edges, a set of 20 
short pyramids are built on each of the faces of the icosahedron resulting in the triakis 
icosahedron (fig. 37B), a figure that does not fully obey the rules of regularity. 
 
Finally the great icosahedron (fig. 35F) can be considered as made up of a convex 
dodecahedron on the faces of which pyramids with 5 pointed star bases are set up.  There 
are 12 such pyramids giving 12 vertices (as in the convex icosahedron).   It is generated 
like the small stellated dodecahedron by extending the edges of the convex 
dodecahedron.  
 
These, therefore,  are the four stellated regular polyhedra.  Their geometry is perhaps best 
understood by reference to the three mutually perpendicular golden rectangles that 
constitute their inner structure.  We have previously seen that the regular convex 
icosahedron can be considered as having its 12 apexes distributed at the corners of three 
such rectangles.  By the duality principle, these same points will be centers for the faces 
of the convex dodecahedron.  Since the stellated figures result from extending either 
faces or edges of the regular convex dodecahedron  or icosahedron, the same inner 
structure of golden rectangles will obtain. 
 
By joining the corners of these planes by a line so that this line connects a corner of a 
plane in a given quadrant to the corner of a perpendicular plane in the adjacent quadrant 
in a straight line tangent to an edge of the third plane, it will be seen that 5 lines issue (or 
converge) at each corner as shown (fig. 38), one of them being the length side of the large 
golden rectangle.  The result is that we can clearly see in turn: 
 

- the small stellated dodecahedron with its underlying regular convex 
dodecahedron 
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fig. 39

fig. 40

fig. 41
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- the great dodecahedron by adding lines  joining consecutive corners thus 
      determining the enclosing regular icosahedron. 
- The great icosahedron also appears as made up of five planes (equilateral 

triangles) at each corner of the golden rectangles, all having a common apex and 
intersecting one another so as to form a pentagram as their trace on the faces of 
the underlying convex dodecahedron.  As will be seen in the study of the 
geometry of the great icosahedron, there are 20 such planes.  Since we have 12 
apexes determined by the 3 golden rectangles, we are indeed dealing with an 
icosahedron. 

- The great stellated dodecahedron cannot be so readily seen on that model.  As 
was previously explained, it can be visualized as a regular convex icosahedron on 
the faces of which triangular based pyramids are erected.  Models of these 
pyramids can be built by extending the edges of the convex icosahedron (fig. 39).  
Adding them to the existing model reveals that the great stellated dodecahedron 
can be considered as made up of plane pentagrams.  Each such pentagram has a 
pentagon at its center formed by the edges of the 5 faces of the icosahedron, these 
faces having a common apex.  

 
Since there are 20 pyramids (apexes) and each pyramid has 3 sides, the number of 
plane pentagrams will be  

 
20 3

5
12 

 
 

Each of these plane pentagrams constitutes therefore a face of the stellated 
dodecahedron. 

 
a. The small stellated dodecahedron (SSD) 
 
As we have seen, it can be visualized as 12 pyramids with pentagonal bases built onto 
each of  the faces of the original dodecahedron (fig. 40).  Alternatively it can also be seen 
as made up of 12 pentagrammal figures (5-pointed stars) as clearly shown on the same 
figure, joined by 3 at every of the 12 vertices of the underlying convex dodecahedron.  
Notice however that the vertices aren’t vertices of the SSD.  The vertices of the SSD are 
those corresponding to the points of the pentagrams where pentagrams come together by 
5. 
 
The stars having been stuck, so to speak, onto the faces of the dodecahedron, we want to 
determine the geometry of these pyramids and some of the properties of the small 
stellated dodecahedron, particularly in its relation to the Ad Quadratum method.  To best 
understand this geometry it is easier to construct a model as previously shown on fig. 38.  
The diagrammatic view is as shown however on fig. 41 and represents the view of the 
small stellated dodecahedron along an axis passing through the vertices of 2 opposite 
pyramids (going through the centers of the opposite faces of the original dodecahedron  
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fig. 42

fig. 43

fig. 44
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and therefore through the vertices of the icosahedron, dual of the original dodecahedron).  
What is then seen is a five-pointed star in true size, as shown in figure 42. 
 
Note that each of the pyramids is made up of five isosceles triangles with base a, side of 
the pentagon. 
 
We now show that these triangles are golden triangles of type 1.  Since the angle at their 
base,   is   

                               
with angle  , angle of the pentagon, we can write 

 
3

5
, 

3

5

2

5
 

and  therefore    2 ,  

or          
5

 

 
 

The pyramids having 5 faces with an apex angle of 
5

 , their development will be 

inscribed in a semi-circle of radius Re  , edge of the pyramid. 
 
This radius Re is easily calculated (fig. 43).  We can write: 
 

sin
10

a
2

Re

But sin
10

5 1

4
 

a

2Re

5 1

4
 

 

or 
a

Re

5 1

2
 

 
 

 But                  
5 1

2

1
 ,  

where  is the golden ratio.  
And we finally have   
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fig. 45
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Re

a
   

 
the well-known relation in pentagrams.  It will be realized that each pyramid can be 
viewed as a folded pentagram constructed on the basis of the pentagonal face of the 
original dodecahedron. 
 
Now a is the edge of the dodecahedron and we have seen that 
 

a
3

3
5 1 R  

 
where R is the circumradius of the dodecahedron. 
 

Re

3

3
5 1 R

1 5

2

       
2
3

3R

 

            

Now again, we will recall that 
2 3

3
R  is the edge of the cube having common 

circumsphere with the original dodecahedron. 
 
This length is readily available on the Ad Quadratum diagram and for a circumsphere of 
radius 3, we have 
 

Re 2 3  
 

 
Having determined the construction of the pyramids (fig. 44) and therefore of the whole 
small stellated dodecahedron made up of these 12 pyramids, we now consider some 
geometric relationship in the figure as a whole. 
 
The geometry of the S.S.D., like that of the convex regular dodecahedron and 
icosahedron, is governed by 3 mutually perpendicular golden rectangles.  The internal or 
Maraldi angle of the stellated polyhedra will therefore be the same as for the convex 
polyhedra.  
 
The rectangles are determined by the apexes of the four pyramids built on the opposite 2 
pairs of contiguous faces of the original dodecahedron.  We begin by looking at the 
original convex dodecahedron so that a pair of edges between 2 faces are seen as points P 
and Q (fig. 45).   
 
The corresponding faces of the dodecahedron will be seen as edges (PD, PC, and QG, 
QH), and so will the pyramids faces having a common edge corresponding to the point  
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view P and Q of the convex dodecahedron edges.  The angle between the faces of the 
dodecahedron is the dihedral angle ˆ D D  and since  
 
 

ˆ D D
ˆ I i , 

 
it follows that the dihedral angle C ˆ P B  between the base and the side of pyramids is also 

 which implies that rectangle ABCD is indeed a golden rectangle. ˆ I i
 
Drawing the diagonals AF and BE in rectangle ABFE we see that ABFE is also a golden  
rectangle ( , which implies that A ˆ O B ˆ I i) DCFE is a square , and EFGH a golden 
rectangle.   
 
Since this geometry holds for any two opposite pairs of pyramids, it can therefore be seen 
that, by the effect of symmetry, we shall obtain 2 other such golden rectangles mutually 
perpendicular to ABFE. 
 
Note that construction of the pyramids can be obtained directly from this figure through 
descriptive geometry:  Having an edge view of one of the faces of the pyramid, we have 
the true height of the triangle constituting that face.  A perpendicular at its base with a 

length of  
a

2
 marked off on either side of the perpendicular determines the face of the 

pyramid.  (One can check, apex =
5

  )  

 
It can also be remarked here (as already noted) that the SSD can be considered as made 
up of 12 pentagrams connected 5 together at each corner of the 3 golden rectangles.  We 
verify that there are 12 such planes (dodecahedron).  Since each pyramid apex is a vertex 
of the SSD there are 5 x 12 = 60 pyramidal sides altogether, and since each pentagram 
plane contributes 5 pyramidal sides there are 60:5=12 pentagrammal planes.  An obvious 
conclusion given the fact that the pyramids were obtained in the first place by extending 
the 12 faces of the original convex dodecahedron. 
 

The circumscribing half circle of the development 
5

5  can now be drawn and the 

development of the pyramid performed as shown on fig. 44. 
 
The circumsphere to the SSD passes through the corners A, B, E, F of that golden 
rectangle.  The radius of the circumsphere is therefore AO, which can be obtained directly 
from the diagram when the golden rectangle is established. 
 
AD is the true length of the pyramid edge, and since 

AD Re  

 
we can write   
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AD a  

from 
Re

a
 

 
Since ABCD is a golden rectangle, 
 

AB AD

AB a 2

But 2 1

AB a 1 a a

or AB AD a

 

 
Where a is the edge of the convex dodecahedron and AD the edge of the cube inscribed 
in the same circumsphere, as previously seen. 
 
ABCD can therefore be constructed directly from measurements taken from the Ad 
Quadratum diagram (fig. 13).  ABEF can therefore be obtained by adding a square 
DCFE. 
 
Note also that ABEF could also be completed by remarking that DG=CH=a  and that 
GHEF is another golden rectangle identical to ABCD.  (A more complete analysis of the 
construction of the golden rectangle based on the adquadratum method is given below 
under Section 4:  Construction of the Golden Rectangles Determining the Structure of the 
Dodecahedra and Icosahedra.) 
 
We also verify that AE AB a 1 a 3 a 2 1 , which can also be seen 
directly on fig. 45, since  

AE BF BC CH HF  
12aaaa  

We now proceed to calculate the ratio of the SSD circumsphere radius Rs to the original 
dodecahedron circumsphere radius R. 
 
 
 
 
 
 
 
 
 
 
 
 



 64

 
 
 
  

fig. 46Bfig. 46A
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We have: 
 

Rs OB   and   OB OL2 BL2

Now OL
a 1

2

a 2

2

and BL a 1
2

a 3

2

OB
a

2
2 1 2

with a
3

3
5 1 R

3

3

2
R

OB
3

3
1 2 R

         
3

3
2R

 

 
Rs

R

2

3
  (or 

Rs

R
1.776) 

 

Noting that cos
Di

2 3
 and sin

I i

2

1

2
, we can write 

Rs

R

cos
Di

2

sin
Ii

2

 , which we can 

define as a growth factor gd1
.  If instead, we consider the ratio of Rs to the insphere 

radius as will be established for the GSD, we can define a new growth factor : g d
 

g d
Rs

r

r h

r

R cos
Di

2
cos

Ii

2
a cos

Ii

2

Rcos
Di

2
cos

Ii

2

1
a

R cos
Di

2

 

with cos
Di

2 3
 and 

a

R

3

3
5 1  it comes g d

Rs

r
5 . 

 
b. The Great dodecahedron:  (GD) 
 
The same basic geometry will obtain for the GD as for the SSD since the GD can be 
considered as made up on the basis of the SSD by extending the planes of the stellated 
faces so as to fill the gaps between the star branches, thus forming a convex pentagram 
(fig. 46A and 46B).  Alternatively, it can be viewed as made up of twelve intersecting 
pentagonal planes and the figure of the enveloping icosahedron clearly appears on fig. 
47A and 47B. 
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fig. 49
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Fig. 46A shows such a pentagonal plane inscribed in the enveloping icosahedron.  The 12 
possibilities of arranging these planes in the icosahedron yield the GD.  The GD can 
therefore be considered as made up of 20 trihedral dimples with the equilateral base and 
formed of isosceles triangles whose sides are the edges of the pyramids of the SSD and 

therefore equal to a   (with a
2

3
R,  the edge of the cube and a, the edge of the 

convex dodecahedron), and whose base is the distance between 2 consecutive vertices of 
the SSD. 
 
From fig. 45, it is therefore seen that the distance between 2 consecutive vertices of the  
 
SSD is equal to AB a 1 . 
 
Considering such a triangle  (fig. 48) : 
 

  

a

a 1

drop  perpendicular to 

a 1

2

cos
a 1

2a

2

2 2

1 5

4

5
   36o

3

5
   (108o )

 

 
 
Triangle  is a golden triangle type 2. 
 
The dimples are readily constructed from the Ad Quadratum diagram since 

=edge of cube 

a
2R

3
 

 =edge of cube+edge of original dodecahedron a a  taken directly from the 
diagram (fig. 13). 

 
Therefore, (fig. 49) to build the dimple that fits between 3 consecutive pyramids, draw a 
circle of radius equal to the edge of the cube and mark off along the circumference the 
length of 3 chords each equal in length to .  Cut out and fold as indicated.  When 
glued along  one obtains an element of a dimple. 
 
20 such glued together along the 3 edges (such as ) of their base will yield the GD. 
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The inner geometry of the GD will be similar to that of the SSD. 
 
Note that the 20 dimple centers correspond to the apexes of an inner dodecahedron and 
that the GD can be considered as a concave icosahedron where each triangle face of the 
regular icosahedron is replaced by trihedral dimple. 
 
We also mentioned that the GD can be considered as made up of 12 pentagonal planes. 
 
Considering one such plane as the basis, five other planes will cut it along traces forming 
a pentagram on its surface.  Together these 6 planes determine half the structure of the 
GD. A similar set, symmetrically positioned, will complete the structure.  These planes 
are made very visible on the model of fig. 46A and on fig. 46B. 
 
Given the pentagonal form of the plane (constructed ad quadratum as shown later:  fig. 
53), the GD will be determined by the knowledge of the dihedral angle between such 
intersecting planes. 
 
This dihedral angle is easily found from the geometry of the dimples just established. 
 
The base  is an equilateral triangle of side a 1  (fig. 50). 
 

  is the peak of the dimple.  The sides of the pyramidal dimple such as  are 
equal to a . 

 
Dropping the perpendiculars H  and H  on the extension of , we see that the 

dihedral angle G  between planes ˆ  and  is . ˆ H 
 
Now, dropping perpendicular HJ on , we can write in triangle JH : 
 

sin
ˆ G 

2

J

H
 

and: 

J
2

a

2
1  

 
To find H , consider triangle , reproduced in fig. 51 with perpendiculars H  and 

K  and in true size. 

K
a

2
1  
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fig. 52
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2

2 2
 

 
Now      H sin  
 

And     sin 1 cos2 1
2

4
 

 
1

2
3  

 

H
a

2
1 3  

 

and      sin
ˆ G 

2

J

H
 

 

sin
ˆ G 

2

a
2

1

a
2

1 3

1

3
 

 

sin
ˆ G 

2
0.85065  

 

 

ˆ G 

2
58o28 

 
 

so that      G  ̂  116o56  
 
Such is the dihedral angle of the pentagonal planes, of course the same as the dihedral 
angle of the convex dodecahedron already calculated. 
 
Naturally, a complete ruler and compass descriptive geometry construction is possible 
starting from the top view of a dimple to find the point view of  (or any other edge 

such as  or  , and therefore the true size of G .  The construction is shown on fig. 
52. 

ˆ 

 
c. The Great Stellated Dodecahedron: GSD (Kepler) 
 
If the edges of the convex icosahedron enveloping the SSD and GD are extended, they 
form triangular based pyramids on each of the 20 faces of this icosahedron (fig. 53).  The 
geometry of these pyramids, as in the case of the SSD, determines the geometry of the  
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fig. 54
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GSD.  Since the apexes of the pyramids can be projected towards the center of the 
icosahedron through the center of its faces, we see that the Maraldi angle of the GSD will 
be the same as that of the convex dodecahedron. 
 
If we look at the convex icosahedron along a line of sight coinciding with an axis going 
through polar opposite vertices, we see the figure of a plane pentagon (fig. 54).  The 
perimeter of that pentagon is made up of the edges of the icosahedron seen in true length.  
Their extension will therefore show the sides of the pyramids in true size, and as in the 
case of the SSD, it is seen that these pyramid sides are constituted of golden triangles of 

type 1. (base a’, sides a  , angles at base 
3

5
, apex angle 

5
, a’ being the edge of the 

icosahedron enveloping SSD and GD, i.e., edge of GD with a a 1  and a edge of 
the original dodecahedron.) 
 
Each pyramid being made up of three sides, its development is readily obtained in a 
circular section of radius a  (fig. 55).  Taking the base a’ from fig. 45 (width of the 
Great Golden Rectangle ABEF), a  is readily obtained as the length of that same 
rectangle.   
 
The geometry of the GSD is easily determined by looking at the convex icosahedron as 
shown in fig. 56 where the top and bottom edges CC’ and VV’ are seen as points.  Then 
edges AB, PL and FM are seen in true length and PC, CF, MV, LV are the edge views of 
the 2 top and bottom faces respectively. (For convenience of pagination fig. 56 has been 
turned by 90 .) 
 
In the two pyramids built on the upper faces, PN and FE will be true length edge a ; 
NC C  and EC C  will be respectively the edge view of one of the pyramidal sides of the 
left and right pyramids.  From the geometry of the icosahedron, we indicate on the figure 
the values of the angles and lengths.   
 
We now want to calculate the radius RG  of the circumsphere of the GSD: 

We have    RG OE  with OE
OD

sin
Di

2

 

 

Now      OD
a 

2
 and sin

Di

2

1

3
 

So that  

        

RG

a 

2
3

a 
3

    
2

2

    a 
3

2
1
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fig. 56
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The circumsphere radius of the enveloping icosahedron Rs is: 
 

  
Rs OF OD2 DF 2 a 2 2

4

a 2

4

                                       
a 

2
2

 

 
We can therefore define a “growth factor” gd 3  from GD to GSD: 
 

gd 3

RG

RS

a 3
2

1

a 
2

2
 

 

or      g 3d 3
1

2
  =2.3839 

 
which can be rewritten, remarking that 
 

2
cos

Ii

2
 and 

1

2
sin

I i

2
 

 

gd 3 3 cos
Ii

2
sin

Ii

2
  

 
or alternatively: 
 

gd 3 6 sin
Ii

2 4
  

In the study of the SSD (p. 65), we have established that the ratio of the circumspheres 
RS  to R, i.e. that of the SSD to that of the original or kernel dodecahedron was: 
 

RS

R 3
2 1.776 

 
Now, the growth factor of the second stellation gd 2  from SSD to GD is gd 2

1, since 

SSD and GD have the same circumsphere.  We have also shown that the growth factor 
from GD to GSD gd 3

 is: 

 

gd 3

RG

RS

3
1

2
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so that the overall growth factor from R to RG  is: 

2
3

  
2

1
3

R

R

R

R

R

R
G S

S

GG
d  

 

        
1

3 2 1 2 5 4.236
 

 
A complete stellation process from kernel dodecahedron to GSD is therefore governed by 
a growth factor 3. 
 
The stellation process of the dodecahedron normally stops there, but a new process can 
be started on the basis of the enveloping convex dodecahedron in a geometric progression 
of ratio 3 ad infinitum. 
 
If we go from step to step, i.e., from kernel dodecahedron to icosahedron, enveloping GD 
and SSD to dodecahedron enveloping GSD, we have a rhythmical pulsation governed in 
turn by gd 1 and gd 3 . 
 
However, if instead of considering the growth from circumsphere to circumsphere, we 
take it from the face of the kernel icosahedron to the peak of the pyramid of the GSD, 
then it is the ratio of the icosahedron insphere radius to the GSD circumsphere radius that 
we must examine. 
 
The height of the pyramid: 
 

HE h a cos
Di

2
 

Now RG  can also be written 
 

RG OH HE  
with OH=r’=insphere radius of icosahedron enveloping SSD and GD. 
 

RG r h  
But we have previously established that 
 

r

R
cos

Di

2
cos

I i

2

r 

RS

 

 
We can therefore define a new growth factor g d 3  as: 
 

g d 3

RG

r 

r h

r 

RS cos
Di

2
cos

I i

2
a cos

Di

2

RS cos
Di

2
cos

Ii

2
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where RS  is the circumsphere of the enveloping icosahedron. 
 

g d 3 1
a 

RS cos
Ii

2

 

 

1
a 

RS

2  

but  
a 

RS

10

5
5 5  for the icosahedron 

 

now      2
5 5

2
 

so that    
a 

RS

2
10

5 2
5 5 5 5 2 

 
              g d 3

1 2 3  
 
or      RG 3r  
 
We now look at the growth from kernel dodecahedron circumsphere R to r’ insphere 
radius of enveloping icosahedron of SSD and GD. 
 
We have established 
 

RS

R 3
2  

 
On the other hand, insphere to circumsphere radius ratio for icosahedra and dodecahedra 
gives: 
 

           
r 

RS

cos
Di

2
cos

Ii

2
 

 

r 

R

RS cos
Di

2
cos

Ii

2
R

R
3

2  cos
Di

2
cos

Ii

2
R

 

 

and, noticing that   cos
Di

2 3
 and cos

I i

2 2
 

 
r 

R 3

2

3

3

3
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fig. 57
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2 1

3
1.412  

 

And since      
RG

r 
3 

We verify that    
RG

R

RG

r 

r 

R
3

3

3
3  

as established p.76. 
 
  
d. The Great Icosahedron (GI) (Poinsot) 

 
As was pointed out in section 2.b., the case of the stellation pattern of the icosahedron is 
more complex than that of the dodecahedron since all but one of its 59 stellations is 
regular.  This is the one of interest to us here and its generation by means of face-
stellation is illustrated on fig. 35. B (c).  Designating by a ic , the edge of the kernel 
icosahedron, reserving a ic  for the edge of the icosahedron having common circumsphere 
with the convex dodecahedron kernel of the SSD, GD, and GSD just studied, the edge of 
the GI will be seen from fig. 35B(c) to be 
 

a GI 23 a ic 8a ic  
 
If we therefore took for kernel the icosahedron of edge a ic  , the figure would be quite out 
of scale in our study.  However, as we mentioned earlier, the Great icosahedron can be 
visualized as a regular dodecahedron on the pentagonal faces of which pentagrammal 
(five pointed star basis) pyramids would be erected.  Such a figure will have 12 vertices, 
and, as we shall see, can be considered as having 20 faces, qualifying it as an icosahedron 
(fig. 57). 
 
Starting from the regular convex dodecahedron as in the case of the small stellated 
dodecahedron (SSD), the Great icosahedron (GI) will be very similar geometrically to the 
SSD.  In particular, the GI having 12 vertices evenly distributed in space around its 
center, will have the same inner structure as the SSD made up of three mutually 
perpendicular golden rectangles, the corners of which are the apexes of the 12 pyramids.  
The pyramids in both cases will have the same height and the external edge of the 
pyramids will be the same, namely, a  in both cases, a being here the edge of the kernel 
dodecahedron inscribed in the circumsphere of radius R.   
 
Therefore, the edge of the pentagonal face of the dodecahedron will constitute the ridge 
of a dimple since the inner edge of the pyramid will extend within beyond the 
dodecahedron faces.  The 12 vertices will then be seen as arising out of pentagonal 
dimples, as in the case of the GSD the vertices were seen as arising out of triangular 
dimples. 
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fig. 45
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The intersection of these pyramids with the faces of the convex dodecahedron determine 
pentagrams.  Since the side of the pentagram is also the diagonal of the pentagon, that 
diagonal will have the same length a .   It follows that the portion of the pyramids of the 
GI above the faces of the dodecahedron can be geometrically considered as made up of 
five intersecting equilateral triangles with a common apex and a pentagrammal base.  
Visually and externally, they appear as indented SSD pyramids. 
 
To understand the geometry of the GI we start with a view of the underlying regular 
dodecahedron, such that top and bottom edges appear as points (P and Q on fig. 45).  
Another edge, P’Q’, will then be seen to be horizontal and in true length in the middle of 
the figure.  As in the case of the SSD, the figure is framed by the great golden rectangle 
ABEF, which also appears in true size. 
 
The bottom edge of the regular dodecahedron being seen as a point at Q, can be 
considered the point view of the line of intersection of two planes (seen on edge QA and 
QB) whose traces at Q” and P” on the faces of the regular dodecahedron facing the 
viewer (edge views:  PC and PD) constitute sides of the pentagram, basis of the GI 
pyramid on that face.  The edge view of these planes follows along the side of the visible 
upper face of the regular dodecahedron (PC and PD) and further to the upper corners of 
the great golden rectangle (at points A and B). 
 
Each of these planes, viewed in true size, will be seen to be equilateral triangles with side 
equal to a a a a 1 2

a

 as shown on fig 49.  Note that the three equilateral 

triangles with sides   in each corner of the planes belong to the pyramids of the GI, 
their sides being the edges of the pyramids, and a=edge of convex dodecahedron. 
 
Since these pyramids are made up of 5 such intersecting triangles (basis disposed along 
the lines of the pentagram) there must be 5 12 60 such triangles altogether for the GI. 
 
Given that each plane contributes 3 of them, it follows that the number of planes within 

the GI must be 
60

3
20.  These 20 planes meeting at 12 apexes are the faces of the GI. 

The scale factor caused by our choosing the dodecahedron of edge a, designated a dod  in 
this context, circumsphere R, rather than the icosahedron of edge a ic  can now be 
evaluated. 
 
We begin by noting that for convex polyhedra of common circumsphere we can write: 
 

a ic

a dod

10
5

5 5

3

2
5 1

 

         

                 3cos
I i

2
1.4733 
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fig. 58
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Now, as has just been established, the edge of the GI as shown in fig. 45 and fig. 58 is: 
 

a dod 1 2  
which can be written: 

a dod
3
  

 
The scale factor to consider is therefore 
 

Sf

8a ic

a dod
3

 

 
or, replacing from above: 
 

Sf

8
3 3 cos

Ii

2
 

 

with      cos
I i

2 2
 

 

it comes    Sf

8 3
2 2

 

After some calculations and reduction we have: 
 

Sf

8 3

11 7
2.7826 

This is the number we should multiply measurements on say fig. 45 to find the actual 
dimension on a model having for kernel the icosahedron of edge a ic . 
 
The question is what is the size of the original kernel icosahedron that would give rise to 
the GI built on the dodecahedron we started with. 
 
We have designated its edge as a ic  so that we can write: 
 

8a ic a dod
3  

 

or      a ic

3

8
a dod  

       
2 1

8
a dod  

       
4

1

8
a dod 0.5295a dod  
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For example, for R 3,  a dod 3 2sin
Di

2
2.1408  

and        a ic 1.1335. 
 
We can now also calculate the growth factor of the regular icosahedra stellation process.  
We start from the convex icosahedron inscribed in the circumsphere of radius R.  The 
first regular stellation is as shown fig. 35B(c) and produces a GI with a circumsphere we 
will designate RI . 
 
A growth factor G  can therefore be defined as:  i

 

Gi

RI

R
 

Let R I  be the circumsphere radius of the scaled down GI represented by gi of fig. 45.  We 
see on that figure that both gi and SSD have a common circumsphere of radius Rs, so that  
 

R I RS  
On the other hand, using the scaling factor Sf  we can write: 

 
RI R I S f  

But since we have also shown (p. 65) that 
 

RS

R

2

3
 

we can write: 
 

RI

R

RS Sf

R

2

3
 

8 3
2 2

 

 
or finally: 

18
8

iG  

            4.9443 
 
The figure enveloping the GI is a convex icosahedron so that the process can start again 

afresh from that point.  We have therefore a geometric series of ratio 
8

 for the expansion 

of GI. 
 
To get a clearer understanding of the GI geometry, i.e., of the relationship between the 20 
planes in space, we consider the dihedral angle w between two such planes, intersecting 
along the edge of the regular dodecahedron, and seen on edge on fig. 45. 
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fig. 45
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We can write 
w 2  

 
and remembering that        OQ ri  
 

we have         tan
a

2
ri

 

 
where a = the edge of regular convex dodecahedron 
and ri  = radius of intersphere of that same dodecahedron.   
 
But as we previously established, for the dodecahedron,  
 

ri

R

intersphere radius

circumsphere radius
 

 

ri

R
cos

ˆ D i
2 3

 

 

with  regular convex dodecahedron internal angle. ˆ D i
 

tan
a

2

Rcos
ˆ D i
2

a 3

2 R
 

 
However, we have also seen that for the dodecahedron: 
 

a
3

3
5 1 R  

 

3

3

2
R  

 

R
3

2 3
a

3

2
a  

 

tan
1

2 2  

 

since      2
1

2 . 

 

Making use of the identity   tanw tan2
2tan

1 tan2  



 87

 

We have     tanw

2
2

1
1

4

2

2 1
 

 

With       
1 5

2
 

 

tanw
2

5
        (tan w=0.8944) 

 
 w 41o 81. 

 
This is the angle we had previously determined to be the internal angle for the regular 

convex dodecahedron D , whose sin was found to be ˆ 
i

2

3
. 

Given the following identity: 
 

1

cos
sec 1 tan 2

 

we indeed verify that 

1 tan2 1
1

2

2

 

1 2 2

1 4 4 2

5 4 1

3 2

3
2

 

cos
3

 

 

as we previously established for 
Di

2
. 

cos
ˆ D i
2 3

 

 
ˆ D i
2

  and therefore . w ˆ D i

(As we have sin ˆ D i
2

3
, we also have sinw

2

3
.) 
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fig. 35F
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The structure of this scaled G.I. can therefore be considered as made up of 20 equilateral 
triangles (sides a 1 2 ) equal to the length of the great golden rectangle ABFE of fig. 
45. 
 
The corners of such triangles will be gathered together in groups of five at the 12 corners 
of 3 mutually perpendicular golden rectangles.  The sides opposite to a given corner will 
form a pentagram.  These five planes will therefore intersect one another as seen on fig. 
35F). 
 
Each side of the pentagram, forms the hinge for another similar plane (equilateral triangle 
set at a dihedral angle ). w ˆ D i
 
Fig. 45 indicates that the lines OG and OH  to these planes from center O form an angle 
equal to ˆ I D , the regular icosahedron dihedral angle.  Now, since ˆ I D

ˆ D i , by 
symmetry of the figure, the angles of OG and OH with the respective planes are therefore 

equal to 
2

, i.e., they are perpendicular to the planes showing the relationship between 

the geometry of the convex and of the great icosahedra. 
 
The scaled GI, the SSD and the GD have the same circumsphere.  They also have the 
same kernel:  the convex dodecahedron.  Their growth factor will therefore be the same.  
That of the GI stellated on the icosahedron of circumsphere R will have however a 

different growth factor of  
8

 as previously shown. 

 
4. Construction of the Golden Rectangles Determining the Structure of 
Dodecahedra and Icosahedra 
 
The three mutually perpendicular golden rectangles provide a unified, visually coherent 
reference system that accounts for all regular polyhedra and “explains” their shape and 
interdependence.  It is directly related to the internal or Maraldi angles that we have been 
developing with their implicit spherical coordinate system as well as the Cartesian 
coordinate planes that the golden rectangles naturally constitute. 
 
We therefore begin by considering the construction of the golden rectangles, structure of 
the dodecahedron and icosahedron.  As we have seen, that structure applies both to 
convex and stellated forms. 
 

a. Case of Convex Polyhedra 
 
First consider the case where the icosahedron has its vertices at the center of the faces of 
the dodecahedron (dual) (fig. 25B and 26).  This is the situation which obtains when we 
address the generation of the stellated polyhedra as previously described in section 2.  
Here, referring to fig. 45, both convex icosahedron and dodecahedron can be taken as 
seeds of the expansion resulting in the generation of the stellated figures.  Then the set of  
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fig. 25B

fig. 26
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the three mutually perpendicular golden rectangles is common to both forms and the 
icosahedron’s circumsphere radius will be equal to the dodecahedron insphere radius. 

 
       i.e., R icos. r dodec. OA      (fig. 45) 
 

One of the Golden rectangles appears as A’B’F’E’. 
 
The construction of the golden rectangle derives directly from the ad-quadratum figure 
(fig. 59) and results from the relation previously established for the dodecahedron: 

 

r Rcos
ˆ D i
2

cos
ˆ I i
2

 

 
Referring to fig. 59, based on fig. 13: 

 
Bisect D ˆ O R  to determine D’ 

 

OD' Rcos
ˆ D i
2

 

Rotate OD’ to OD” on OR. 
 

Bisect W ˆ O R  with OW’ and project D” on OW’ at D  
 

Then     OD Rcos
ˆ D i
2

cos
ˆ I i
2

 

 
Therefore     OD r  

 
Draw circle,  radius OD  and mark points W”, R’, S’, U’. 
 
Rectangle W”R’S’U’ is the golden  rectangle desired and is the same as rectangle 
A’B’F’E’ of fig. 45. 
 
Second, consider the case where both icosahedron and dodecahedron have the same 
circumsphere. 
 
i.e.,     R icos. R dodec. R  
 
 
as we have assumed in our study of the convex polyhedra.  It has been shown that, in that 
case, they also have a common insphere, i.e., r icos. r dodec. . 
 
The sets of golden rectangles establishing the structure of these polyhedra will then be of 
different size though they may have the same orientation. 
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fig. 45
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For the dodecahedron, the golden rectangles will be identical to those of case (a). 

 
For the icosahedron, the half diagonal will have the value R and the width of the 
golden rectangle will equal in length the edge of the icosahedron.  The golden 
rectangle appears as A”B”F”E” on fig. 45.  The construction also follows 
immediately from the Ad-Quadratum diagram (fig. 59): 

 
Extend WO to S” and join W to U to S” to R.  WRS”U is the golden rectangle desired. 

 
We now turn our attention to the stellated polyhedra. 

 
 

b. Case of stellated polyhedra 
 
We want to construct the sets of three mutually perpendicular golden rectangles, which 
determine the structure of the small stellated dodecahedron (SSD), the great stellated 
icosahedron (GSI), the great dodecahedron (GD) and the great stellated dodecahedron 
(GSD). 
 

 
Case of SSD: 
 

The SSD can be viewed as previously explained at the beginning of section 2 as made up 
of a basic convex dodecahedron on the faces of which pentagonal pyramids have been 
erected.  If the convex dodecahedron we started with has a circumsphere of radius R, then 
the width of the golden rectangle structuring the SSD, namely ABFE on fig. 45, is equal 
to the diameter of the dodecahedron intersphere (radius ri) as can be seen from the figure, 
so that as previously established:  
 

ri

R
cos

ˆ D i
2

 

 

i.e., width = 2ri 2Rcos
ˆ D i
2

 

 

Now Rcos
ˆ D i
2

 is already available from the previous construction (fig. 59, as OD”), so 

that the required golden rectangle can be also constructed ad-quadratum as shown on that 
figure. 
 
We verify that, as we have seen 

cos
ˆ D i
2 3
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fig. 59
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so that      2R cos
ˆ D i
2

2R
3

. 

 
For the dodecahedron: 

R
a 3 1 5

4

a 3

2

 

 

giving finally    2R cos
ˆ D i
2

2
a 3

2

2

3
 

2a , 
as was established from fig. 45 for the width of the great golden rectangle. 
 

Case of the GD: 
 
Since the G.D. can be considered as obtained by extending the faces of the pyramids of 
the SSD, the same golden rectangles as in the previous case will hold.  In fact, the length 
of the top edges of the five pointed stars that appear on the GD faces are equal to the 
width of the golden rectangle as fig. 45 clearly shows and forms the edges of an 
enveloping convex icosahedron.  This is seen as distance AB between the vertices of the 
pyramids.  It also happens to be equal to the kernel convex dodecahedron intersphere 
diameter. 
 

Case of the GSD: 
 
From the study of the geometry of the GSD done under section 3C above, we see that the 
GSD will have a circumsphere of radius RG ,  

with 
RG

3R

    2 1 R
 

 
The GSD has the same Maraldi angle as the convex dodecahedron as previously 
explained, i.e., its 20 vertices are projections of the convex dodecahedron vertices onto 
the sphere of radius RG .  We can also remark that by joining the GSD vertices, the 
enveloping dodecahedron appears. 
 
The golden rectangles that govern the structure of the GSD will therefore be inscribed 
into a great circle of the sphere of radius RG .  The diagonals of such a rectangle form the 
angle Ii  at the center.  The width W and length L of the rectangle can therefore be written: 
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W 2R 3 sin
Ii

2

2

sin
I i

2

R  

L 2R 4 sin
Ii

2

2

sin
I i

2

R  

 
or: 

W 2csc
I i

2
R 3.804R  

 

L 2 csc
Ii

2
R 6.155R  

 
For R=3   W=11.412 

     L=18.465  
Case of the GI:  

The great golden rectangle common to SSD and gi is ABEF on fig. 45.  The sides are 
a d

2  and a d
3  respectively. 

 
On the other hand, we have established (p. 83) the scaling factor Sf  between gi and GI: 

 

Sf

8 3
2 2

 

 
We can therefore write for the GI golden rectangle: 

L a d
3Sf

  a d

8 3

2

 

 

but             

 a d

2

3
R

L
2

3

8 3

2
R

 

 

L
16

2
R 16sin

I i

2
R 8.411R  

and        W
16

2
R 16 1 sin

Ii

2
R 5.198R  
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Alternative Methods of Generating the Regular Polyhedra 
 

1. Historical Perspective 
The word generation is telling since it implies a living process, a transmission of the 
genus from one generation to the next, from one form to the next, as we read in the 
biblical account the succession of the generations:  one individual begetting another 
who in turn beget others, down. 
 
Indeed, this is very much the way these figures have been thought of from antiquity to 
the Renaissance and beyond.  Kepler24 speaks of them in terms of sexual relations: 
 

“The cube is the outermost and most spacious, because it is 
the first-born and, in the very form of its generation, 
embodies the principle of all the others.  These shapes join 
together in two noteworthy types of matings because they 
have different sexes.  For among the first group of three, 
the cube and the dodecahedron are male, and among the 
second group the octahedron and the icosahedron are 
female.  To this is added the bachelor or androgyne, the 
tetrahedron, because it is inscribed in itself [i.e. it mates 
with itself]. Tthe female solids are inscribed inside the 
males and are as it were subject to them, and have the 
characteristics of the feminine as opposed to the masculine 
sex, namely, that [when they are nested inside male shapes] 
their angles are opposite the [male] faces.” 

 
This is certainly a less dry way to state the duality principle than our more modern 
mathematical way. 
That forms beget one another is another aspect of the natural cycles of changes that 
govern creation in the ancient and classical view.  Plato had spoken of it in the 
Timaeus: 
 

“In the first place, we see that what we just now called 
water, by condensation, I suppose, becomes stone and 
earth, and this same element, when melted and dispersed, 
passes into vapor and air….and thus generation appears to 
be transmitted from one to the other in a circle.” 

 
Later, he had identified these elements (Tim. 55ff) with the very platonic forms 
Kepler will use as a structure for his world system.  Kepler considers the cube as first 
in rank for it generates the tetrahedron by subtraction and the dodecahedron by 
addition.  The octahedron results from the tetrahedron mating with itself (as in the 
stella octangula); the icosahedron is born of the dodecahedron by subtraction 
(chopping of vertices), giving rise to faces. 

 
24 From Kepler, Harmonices Mundi Books, 180 ff, quoted in George Hersey, Architecture and Geometry in 
the Age of the Baroque, Chicago U.P. 2000, p. 90. 
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fig. 60
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As Fernand Hallyn25 points our, “Kepler based the order of the polyhedrons on a 
genealogical metaphor that links their “nobility” to their more or less direct descent from 
the sphere and permit them to be sexually differentiated and enter into marriages.”  
Galileo was more matter-of-fact and ironical in his approach:  “As for me, never having 
read the pedigrees and patents of nobility of shapes….I believe that there are none which 
are noble and perfect or any that are ignoble and imperfect, except in so far as for 
building walls the square shape is more perfect than the circular, while for rolling or for 
moving wagons I deem the circular more perfect than the triangular.” 

 
In Kepler’s view however, the regular polyhedra were at the very core of Creation 
and presided at the organization of the world system (fig. 60).  Their generation was 
therefore not just a matter of geometry, physics or even metaphysics, but of theology, 
indeed of reading the very mind of God: 
 

“It is my intention, dear reader, to demonstrate in this little 
work that with the Creation of this mobile universe and the 
arrangement of the heavens, God the Great Creator had in 
mind these five regular bodies that have been so famous 
from Pythagoras and Plato to our days, and that he caused 
the number of the heavens, their proportions, and the 
system of their motions to conform to the motions of these 
bodies.”26 

 
As we shall see later (Music and World View, Adquadratum and Astronomy), Kepler 
proposed an elaborate system made famous through his “planetarium”, showing the 
imbrication of the planetary orbits within the first platonic forms (see fig. 60). 
 
Plato had claimed27 that the smallest constituents of the elements were composed of 
the five regular polyhedra.  As Hallyn28 put it:  “Kepler’s accomplishment in 
Mysterium Cosmographicum is to have transformed the cosmogonic function of the 
five solids by transferring it from the creation of matter to the construction of cosmic 
space.” 

 
Throughout the ages, polyhedra have been viewed through the prism, so to speak, of the 
culture within which they have been studied.  Their study played a major role during the 
Renaissance in the development of perspective.  The work of Dürer, Wenzel Jamnitzer, 
Piero della Francesca, Barbaro, Pacioli, and others gave prime place to their two 
dimensional representation that gave impetus to projective geometry.  Besides the purely 
mathematical properties that have emerged there has been a fascination with ways to 
construct and represent these platonic forms.  The metaphors used to explain their 
generation have evolved but have always naturally been related to the general worldview  

 
25 Fernand Hallyn:  The Poetic Structure of the World – Copernicus and Kepler, Zone Books, New York, 
1990, p. 199. 
26 Kepler:  Mysterium Cosmographicum – Introduction. 
27 Plato:  Timaeus, 55ff. 
28 Hallyn:  op. cit. p. 197. 



 100

  

fig. 61



 101

                                                          

held by their authors.  From the divine artificer in Plato to sexual reproduction in Kepler, 
we come to our own time of Big Bang and cosmic explosion.  It is therefore in this 
cultural perspective that implicitly, we have considered the method of generating the 
regular polyhedra, namely, that resulting from a point in Euclidean space radiating along 
straight lines at angles determined by the polyhedra internal angles.  These radii on 
impacting a sphere whose center is at the issuing point, mark the vertices of the polyhedra 
on the sphere, which then becomes the circumsphere to these figures.  The regular 
polyhedra, convex and stellated, can then be materialized by joining the respective 
vertices of the figures by straight lines, i.e., establishing relationships between points 
spherically distributed in space, thus forming the edges of the polyhedra.   
 
The new definition of regularity that we have proposed29 allows us to locate directly on 
the sphere the vertices of all regular forms from our adquadratum construction without 
explicit knowledge of the number of sides in the faces of the polygons making up each 
polyhedron.  Then, following simple topological rules, the edges of all the forms 
involved, convex and stellated, can be determined.  Several alternatives to locate the 
vertices present themselves, some of which we examine in turn. 
 

2. Method of  Vertices Location on the Sphere via the Internal Angle : 
 

a. With the Three Mutually Perpendicular Golden Rectangles 
The three mutually perpendicular golden rectangles underlying the structure of the 
dodecahedron and icosahedron as well as that of the regular stellated forms 
constitutes in fact a Cartesian frame of reference at the heart of our sphere.  Their 
construction within the sphere is straightforward with the knowledge of the 
internal angle of the icosahedron obtained from the adquadratum construction, 
since that angle is the angle of their diagonals. 
 
To construct the golden rectangles, we draw a great circle on the sphere 
establishing the plane of one of them (the octahedron edge obtained from the 
adquadratum diagram can be used for that purpose) (fig. 61).  From a point at 
random on that circle, we draw another great circle, which will be perpendicular 
to the first.  Then from either of the two points of intersection of these two circles 
with the same compass opening, namely the octahedron edge, draw a third circle 
which will also be perpendicular to the two previous circles, establishing three 
mutually perpendicular planes with intersections having a common point at the 
center of the sphere. 
 
Having the three mutually perpendicular planes within the sphere, a golden 
rectangle can be traced on each one of them as shown before in section 4a above  
(p. 89ff., and fig. 59).  The corners of these golden rectangles mark the 12 vertices 
of the icosahedron on the sphere. 
 

 
29 See p. 3 and 43. 



 102
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By joining each such vertex to its immediate neighbors (all five of them) through 
straight lines, we obtain a convex icosahedron.  By joining them through arcs of 
great circles we obtain on the sphere a “planar” network. 
 
We now join each vertex to its five second immediate neighbors by straight lines.  
Connecting these vertices similarly through arcs of great circles will yield a non-
planar network where lines cross one another at points that are not vertices. 
 
We now consider the polygons formed by grouping of these latter straight lines 
just drawn. 
 
If we take two consecutive lines issuing from a given vertex we see them 
subtending the edge of the icosahedron (fig. 62(j)), and forming pentagrams 
within the pentagonal facets of the convex icosahedron just described (fig. 62(i)).  
A facet is a plane polygon (not a face) spanning the vertices of a polyhedron.  
Thus by joining the vertices diametrically opposed on the face of a cube a 
triangular facet (side of a tetrahedron) appears in the cube (fig. 62(b)).  In our 
present case, these pentagrammal facets (12 of them altogether) (fig. 62(j)) are 
sides of the SSD.  They come together in groups of 5 at each vertex. 
 
If now instead of taking consecutive lines issuing from a vertex we take the two 
lines subtending the length of the golden rectangle with which they form all 
equilateral facet (fig. 62(k))  we shall see at each vertex, five such facets 
intersecting one another to form the GI.  With 12 vertices and 5 planes at each, we 
have a total of 60, but since each contributes to 3 vertices, the number of planes is  
 

60

3
20. 

 
We will also notice that the non-vertex crossing points serve as vertices for a 
small convex dodecahedron on the faces of which pentagonal pyramids would 
have been erected to yield the SSD already determined.  Alternatively, it can also 
be considered as that yielding a GI by erecting on its faces pentagrammal 
pyramids resulting from the intersection of the triangular facets just established. 
 
The combinations of lines resulting from the SSD and the original convex 
icosahedron is seen to yield the GD which can also be viewed as resulting from 
the intersection of 12 pentagonal facets within the icosahedron (fig. 62(i)). 
 
Now take the convex dodecahedron such as the one just mentioned and consider 
two parallel faces and the five vertices in their immediate neighborhood.  These 
five vertices are in a plane parallel to the bases.  They form either a pentagonal 
facet (fig. 62(g)) or a pentagrammal one (fig. 62(h)) when joined together.  Note 
that the edge of the pentagon which is a diagonal of the original pentagon is equal 
to the edge of the cube inscribed in the same sphere as the original dodecahedron.   
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Note also that three such pentagrams meet at each of the 20 vertices of the convex 
dodecahedron to yield a GSD. 
 
So far, by means of the three mutually perpendicular golden rectangles we have 
established the convex icosahedron and dodecahedron as well as the four stellated 
regular polyhedra. 
 
The octahedron has been implicitly established when we constructed adquadratum 
the three mutually perpendicular planes within the sphere.  Their mutual 
intersections two at a time with the sphere at 6 different points are the vertices of 
the octahedron. 
 
For the cube, on one of the three planes we draw through the center of the sphere 
two diameters forming angle C .  Four vertices are thereby determined at the 
contact point with the sphere.  Drawing circles of radius equal to the adquadratum 
value of the cube edge on the sphere from each of these four vertices will yield 
four new vertices at their intersection.  The total of 8 vertices is then available for 
the cube. 

ˆ 
i

 
The tetrahedron will then be easily constructed by selecting one of the cube 
vertices as a starting point and further selecting its three second immediate 
neighbors and joining these 4 vertices together. 
 
b. By Individual Polyhedra 
The three golden rectangles approach yields a top-down generation of the regular 
polyhedra so to speak.  We go from the complex to the simple, from the 
icosahedron and dodecahedron and their stellated forms to the cube and the 
tetrahedron.  In the present method, we go from the simplest to the more complex, 
starting with the individual tetrahedron.  We make no direct reference to the 
golden rectangle structure. 
 
Given are the sphere of Radius R and the adquadratum diagram providing us with 
the internal angle and therefore the edge of each polyhedron inscribed in the 
sphere of radius R. 
 

 For the Tetrahedron, pick a point at random on the sphere.  One can imagine 
doing this either externally or internally to the sphere.  From that point as center, 
draw on the surface of the sphere the circle having for radius the chord of the 
tetrahedron internal angle (edge of the tetrahedron) as given on the adquadratum 
diagram.  From another point at random on this circle and with the same compass 
opening, draw another circle on the sphere.  It will cut the first circle at two 
points.  These and the two previous points are the vertices of the tetrahedron.  The 
six straight line segments joining the 4 vertices together are the edges of the 
tetrahedron.  Joining the vertices to the center of the sphere gives form to the 
Maraldian pyramids of the tetrahedron. 
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 For the cube, select a pole on the sphere and its antipole (point diametrically 
opposite).  This can be done by drawing two great circles perpendicular to one 
another as shown in the previous section.  There from the poles draw two circles 
with compass set at the adquadratum value of cube edge.  From an arbitrary point 
on one of these circles and the same compass setting mark off a point on the other 
circle and from this last point mark off another point of the previous circle and 
move alternatively from one circle to the other 6 times altogether until one is back 
at the starting point (cycle completed).  The two poles and the 6 points marked off 
on the two circles are the 8 vertices of the cube.  Joining each vertex to its nearest 
neighbors through straight line segments will yield the Maraldian pyramids. 
 
Alternatively, since cube and tetrahedron of common circumsphere may be 
considered as sharing 4 vertices, from these 4 vertices, circles may be drawn on 
the sphere with radii corresponding to the chord subtending the cube internal 
angle and obtained from the adquadratum diagram.  Their intersections will yield 
the 4 additional vertices needed to define the cube. 
 
As previously mentioned, joining each vertex to its nearest neighbors and to the
sphere through straight line segments will yield the cube. 
 

 For the octahedron, start with one pole and an adquadratum compass setting 
corresponding to the octahedron edge, as in establishing the three mutually 
perpendicular golden rectangles.  The circle described on the sphere will be a 
great circle.  Then from a point at random on that circle, draw another circle 
cutting the first at two points.  Finally from one of these last two points draw a 
third circle cutting the other two circles.  The three circles will be mutually 
perpendicular.  This new circle will pass through already determined points and 
will set two new points which together with the previously established points will 
locate the 6 vertices of the octahedron. (fig. 61) 
 
Again, joining each vertex to its 4 immediate neighbors by straight line segments 
will yield the octahedron.  Connection with the sphere center gives the Maraldian 
pyramid. 
 

 For the icosahedron, the same method as that used for the cube will work.  
First select diametrically opposed points on the sphere and from each as center 
draw circles with compass set at adquadratum value of icosahedron edge.  Then 
from a point at random on one of the circles strike a point on the other circle with 
the same compass setting and from this new point strike another point on the 
previous circle.  Keep alternating from circle to circle.  After 10 strikes, one is 
back to the starting point.  These 10 points plus the two original poles are the 
twelve vertices of the icosahedron.  Joining each vertex to its five immediate 
neighbors will yield the icosahedron; joining them to the center of the sphere, one 
obtains the three Maraldian pyramids.  Joining them to their 5 second immediate 
neighbors will yield the SSD (fig. 62(j)) and the GI (fig. 62(k)).  One reads the  
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SSD or the GI depending on the grouping of connecting lines between vertices 
lying in the same planes (pentagram, p. 62(j)) or triangle (fig. 62(k)). 
 
Alternatively, one can proceed step by step.  Starting from a point at random with 
a compass opening corresponding to the internal angle draw a complete circle on 
the sphere.  From any point on that circle, strike arcs around with the same 
compass opening, to divide the circle in five equal segments.  Then from each of 
these points, draw circles on the sphere.  Their intersections will yield the five 
new vertices.  Two circles drawn from any of these new vertices will yield the 
12th vertice, opposite pole of the original vertex. 
 

 For the dodecahedron, we begin by remarking that, as we already saw with our 
adquadratum construction,  

a cube a dod  
 

i.e., the internal angle of the cube subtends the diagonal of the pentagonal face of 
the dodecahedron.  In other words, all vertices of the cube belong also to the 
dodecahedron (as evidenced from the Euclidean construction of the dodecahedron 
based on the cube).  To build our dodecahedron, we start with the cube vertices as 
center of circles of radius a dod , taken from the adquadratum diagram.  These 
circles intersect in pairs at two points (spherical vesica pisce).  To qualify as a 
vertex the point must be distant from its closest neighbors by a dod .  Only one of 
the 2 points will satisfy the condition.  However, two such points will be 
generated for each face of the cube for a total of 12 new vertices which, added to 
the 8 of the cube brings the grand total to 20, the number of vertices of the 
dodecahedron. 
 
Having all the vertices of the convex polyhedra it is possible to build all the 
stellated forms. 
 

 
3. Method of Interference: 
 
We now turn to what might be called the method of interference.  We start again from the 
five sets of radial directions.  But this time, instead of considering the pyramids or cells 
of space delimited by the planes formed by pairs of radii, we examine the case where we 
have, for each set of radii respectively, a set of spheres of diameter equal to that of the 
circumsphere with centers located on the radii and all equidistant from the center of the 
circumsphere.  We next proceed to move these spheres towards the center of the 
circumsphere at an equal rate so that, eventually, they will first touch the circumsphere 
together, and as the movement proceeds, interfere with it, thus forming circular planes 
perpendicular to the axes of progression.  As the progression continues further these 
circular planes will in turn interfere with one another thus forming dihedral angles (all 
equal in a given polyhedric form) whose lines of intersection will come to form the edges 
of the respective polyhedra when these edges meet together and thus form vertices.  
These vertices will just lie on the circumsphere and will be the vertices of the respective  
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fig. 63A

 
 

fig. 63B

fig. 63C
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platonic forms.  They will also lie on the circular planes on which the lines between 
vertices (intersection of the dihedral angles) will be the edges of the faces of the 
polyhedra.  
 
A point to notice is that radial axes along which the spheres are moving are the radii on 
which lie the apexes of the dual of the form generated. 
 
Thus for the generation of the cube, the axes will be the radial lines of the octahedron and 
conversely.  Similarly, for the dodecahedron and the icosahedron.  For the tetrahedron, 
since the tetrahedron is its own dual, it will be the radial lines of a tetrahedron, oriented 
as shown in Kepler’s stella octangula. 
 
We now proceed to calculate the size of the circular interference planes necessary to 
build the faces of the five platonic forms.  We shall subsequently establish a purely 
geometric process based on the ad quadratum method.  The assumption is that all platonic 
forms will have a common circumsphere.  In each case, r will present the radius of the 
circular plane bearing the face of a particular polyhedron while a will be the edge of that 
face. 
 
R represents the Radius of the common circumsphere.  The number of circular planes 
required per polyhedron will naturally be equal to the number of faces of that polyhedron.  
With circles cut out, the polyhedra models can be assembled by sliding the circles 
through the slots as shown on fig. 63. 
 

Tetrahedron (triangle) (fig. 63A) 
 

As we have previously seen:   a
2

3
6R  

 
or a=1.633R 

 
 
And as established by Euclid30   
 

r
2 2

3
R  

 
r=0.943R 

 
 

so that      
a

r
3    

 
for R=3    a 2 6 4.900

                                                           
30 Heath, Thomas:  op. cit. p. 251  



 111

    r 2 2 2.828

1

3

 

a

2

2
a

2

2

r2

r
a 2

2

a
2 3

3
R

 
(We consider the case of R=3 throughout since it is that corresponding to the ad 
quadratum construction based on the square of unit side.  It also simplifies expressions 

due to the presence of the factor  in many cases and provides a useful scale for our 

models.) 
 

Cube (square) (fig. 63B) 
 
Referring to figure (63B) we can write 

 

 

 

 

But      so that r
6

3
R  

 
          a=1.155 R    r=0.816R 
 
 
For R=3,     a 2 3 3.464  
     r 6 2.449 
 

Octahedron: (triangle) 
 

a 2R     as seen previously. 
 
The geometry of the triangle is the same as for the tetrahedron and will be the same for 
the icosahedron.  So that we can write directly by reference to fig (63A): 
 

r
3

3
a  

 
and therefore: 

 r
6

3
R   

 
(the same as for the cube and half the side of the tetrahedron) 
and we check that indeed  
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a

r
3  

For R=3     a 3 2 4.243 
    r 6 2.449 
 

Icosahedron: (triangle) 
 

Here again     r
3

3
a  

 

But this time    a
10

5
5 5R   

 
a=1.05146R 

 

So that:    r
2(5 5)

15
R  

 
r=0.6070R 

 
For R=3,  a=3.154 

      
r=1.821 

 
Dodecahedron: (pentagon) (fig. 63C) 

 

Here also, we know that  a
3

3
5 1 R  

 
    a 0.714R  
 
But we also know that Aristeus, Hypsicles dixit31, proved that 
 

r dodi . r isoc .  
 
Which follows from the fact we have proved earlier that both dodecahedron and 
icosahedron have a common insphere if they have a common circumsphere since tangent 
planes to the insphere will cut similar circles on the circumsphere in both cases. 
 
We can therefore write directly: 
 

                                                           
31 Heath, Thomas:  op. cit. p. 254 
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fig. 64

 
  
 

fig. 65

fig. 66
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r
2 5 5

15
R  

 
r=0.607R 

 
For R=3, a=2.141 

     r=1.821 
 
As also mentioned before, all these results can be obtained directly geometrically from 
the Ad Quadratum method, which we now consider. 

 
 

4. Results of Interference Method Through Ad Quadratum:   
 
For all polyhedra whose faces are triangles, namely the tetrahedron, the octahedron and 
the icosahedron, it is simply a matter of finding the circle circumscribing an equilateral 
triangle of given side a. 
 
The appropriate measure of a is picked off directly from the ad quadratum diagram (fig. 
13) for each polyhedron.  The circumscribing circle can then be constructed as shown on 
figs. 64, 65 and 66 where a represents alternatively the edge of the tetrahedron, the 
octahedron and the icosahedron and r the radius of the circular plane as shown on figs. 
63A, B and C respectively. 
 
For the cube, we find the circle circumscribing the square of side a as shown by the 
construction of fig. 65. 
 
For the dodecahedron, we find the circle circumscribing the pentagon of side a shown by 
the construction on fig. 66. 
 
We begin the construction as for building the triangle (fig. 64), extending the sides of the 
triangle as when building the square (fig. 65).  Erect AC and BD.  Then draw circles of 

radius 
a

2
 centered on A and B. 

 
Swing EB and FA to C’ and D’ on AC and BD respectively.  Then swing AC’ and BD’ to 
G on axis XX’.  From G with radius a mark off H and I on circles of radius a centered on 
A and B respectively.  ABIGH is the pentagonal face of the dodecahedron of edge a.  To 
determine the center of the circumscribing circle to the pentagon, draw circle of radius a 
centered on I.  This circle intersects the circle radius a, centered on B at J and K.  Join J 
and K.  Line JK intersects axis XX’ at O, center of pentagon.  Then with radius OG (or 
OI, etc….) draw circle circumscribing the pentagon, which completes the construction. 
 
 
5. Method of the Six Directions of Space: 
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fig. 6
fig. 68

 
  
 
 

fig. 67

fig. 6

fig. 69
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This method is based on the simplest intuitive approach to the generation of the regular 
polyhedra. 
 
In the most immediate apprehension of Euclidean space one is aware of the front, back, 
left, right, up and down directions.  These directions determine in fact a Cartesian system 
of coordinates.  We therefore begin with a set of three mutually perpendicular axes, each 
extending in both directions away from their common origin. 
 
By measuring equal distances along each of these directions, an octahedron is generated 
(fig. 67).  Imagining now other such octahedra located along the 6 directions, and as in 
the previous method of interference, letting them be moved along the axes at an equal 
rate they will eventually interfere with the original octahedron.  As the movement 
progresses, a smaller cube (c, d, e, f), the faces of which will be perpendicular to the axes 
will be formed as shown in fig 68, where the view is along the ZZ’ direction of fig. 67. 
 
Alternatively, one can generate the cube directly by erecting planes perpendicular to the 
axes at each of the vertices of the original octahedron.  This cube is the dual of the 
octahedron. 
 
Once we have the cube, the tetrahedron can be generated by partitioning the cube as 
shown on fig. 6.   
 
The next step is to generate the icosahedron and the dodecahedron.  For this we remark 
that the structure of these two polyhedra is governed by the existence of three mutually 
perpendicular golden rectangles, the corners of which constitute the vertices of the 
icosahedron or the face centers of the dodecahedron. 
 
Given the 6 directions of space determining the mutually perpendicular planes of a 
Cartesian system of coordinates, it is sufficient to trace out on these planes golden 
rectangles the centers of which coincide with the origin of the coordinate system.  To this 
end (see fig. 69) and using the ad quadratum method, draw squares of unit side (OABC 
and OCDE) in two of each adjacent quadrants of a given plane (say OXY’ and OX’Y’).  
Then draw the diagonal DA of the double square.  With center O’, swing O’A down to F. 
 

Then     OF
1 5

2
 

 
and since OA = 1 by construction, it follows that OAGF and OFHE are golden 
rectangles.  Now swinging OF to I, we can build the golden rectangle GHJK centered on 
the origin.  The other 2 mutually perpendicular golden rectangles can then be built in 
their respective planes and then appear as edges, one as full length LM, the other as full 
width NC, in the elevation and right view respectively. 
 
As we have previously seen the three mutually perpendicular golden rectangles constitute 
also the structure of the four stellated polyhedra.  Combined with the view from the 
center involving the internal angles, we have here a most potent instrument to visualize  
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the structure of all regular polyhedra, stellated or not, since it is a simple matter to 
construct on the planes of the golden rectangles the octahedron and the cube as 
previously described. 
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fig. 70

fig. 71
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Ad Quadratum method and the Generation of the Spirals. 
 
1. The Golden spiral: 
 
Considering the ad quadratum diagram (reproduced in fig. 70), we see that, by 
construction, rectangle HJD  has for sides HD J 1 5  and HJ D 2 . HJD  
is therefore a golden rectangle. 
 
By successive square subtraction such as ABJH, A 'B D' , etc., out of the golden 
rectangles the golden or logarithmic spiral can be traced. 
 
2. The Growth spirals: 
 
Now, considering the spiral of growth of the square (cube face) on fig. 71, it is seen that 

as the angle of turn increases by 
4

 in arithmetic progression, the radius grows in 

geometric progression of ratio 2 .  That growth spiral is therefore also a logarithmic 
spiral.  Similar spirals can be constructed for each side of the square, giving rise to lobes 
as shown on fig. 72 and 72A. 
 
Based on the equilateral triangle (face of the tetrahedron, the octahedron and the 
icosahedron) or the regular pentagon (face of the dodecahedron), other spirals of growth 
as shown on fig. 73 can be traced. 
 
It is these spirals of growth that we see projected on the inner surfaces of the pyramids 
making up the platonic forms as shown on the plate showing the evolution of these 
platonic forms (fig. 74). 
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fig. 72 fig. 73

fig. 72A
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fig. 74
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fig. 75

fig. 76

fig. 77
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Ad Quadratum and the Pythagorean Triples 
 

Triples in general are sets of three numbers such that the sum of the squares of the first 
two is equal to the square of the third.   
 
Thus    32 42 52     9 16 25

2

 
2 2Or    6 8 10     36 64 100  

2
1.5 22 2.52     2.25 4 6.25  

4
2

32 52     16 9 25  
2

22 32 13     4 9 13  

 
This is the direct result of the Pythagorean theorem. 
 
The fact that a triple represents the sides of a right angle triangle is very useful. 
 
A convention for representation is that the numbers are given preceded by the designation 
of the angle (if a geometric representation is intended) followed by the base, the height 
and the hypotenuse. 
 
e.g. A) 4,3,5 or B) 3,4,5, as seen on fig. 75, whether we consider A or B to be angles of 
import.  This has the advantage of allowing trigonometric ratios to be readily available. 
 

e.g. A) 4,3,5 implies cos A
4

5
, sin A

3

5
, tan A

3

4
. 

 
If the angle is at the origin of a rectangular coordinate system and the base along the 
positive X-axis, then in our example, 4 and 3 become coordinates of B, the other 
extremity of the hypotenuse, combining Cartesian and polar description. 
 
The internal angles of the Platonic forms can therefore be identified thus:   
Cube: C ˆ 

i)1,2 2,3; Tetrahedron: T ˆ i) 1,2 2,3; Octahedron: O ˆ 
i)1,1, 2 ; Icosahedron: 

ˆ I i)1,2, 5 ; Dodecahedron ˆ D i) 5,2,3. 
 
Pythagorean triples are restricted to whole numbers, however, so that these latter triples 
containing irrational numbers such as 2  or 5  would not qualify as Pythagorean.  
 
Pythagorean triples are limited to squares.  This is a consequence of Fermat’s famous last 
theorem which states that the equation zu x u y u has no whole-number solutions for 
any power u greater than 2.    
 
Though stated by Fermat around 1660, the theorem remained a conjecture for about 333 
years, when Andrew Wiles of Princeton finally proved it in 1994.  It is not the place to  
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elaborate on this here.32  As far as Pythagorean triples are concerned, the question is:  do 
there exist right angle triangles of which all sides are representable by whole numbers?   
 
As we have seen, the triple x=3, y=4, z=5 
   i.e., 32 42 52        
  
which goes back to ancient Egyptians and Babylonians, is such an example.  The 3, 4, 5 
triangle was used by architects and builders in chain links or ropes (fig. 76) of 12 units to 
construct right angles in an application of the converse of Pythagoras Theorem: 
 
This converse of Pythagoras Theorem can be stated as:   
If , then the angle opposite z is a right angle.  This statement forms Euclid’s 
Proposition I-48 in the Elements, and Euclid proved that there are an infinite number of 
solutions. 

z2 x 2 y 2

 
For algebraic proof, we follow Neugebauer.33 
 
Consider the triangle a, b, c. (fig. 77) 
 

            (1)
Let      a=u+v  
     b=u-v 
 
Where u and v are any natural numbers so that a and b can also range over the whole 
field of natural numbers.  Then, for a, b, c to be Pythagorean (i.e., right angled with a, b, 
c whole numbers), the following relation must obtain: 

a2 b2 c 2 
 
Which implies that: 

c 2 4uv              (2) 
 

Since:      
a2 u2 v2 2uv

b2 u2 v 2 2uv
 

 
So if u and v are integers, a and b will also be integers.  But c will be integer only if uv   
is an integer.  This will be the case if we assume u and v to be squares of integers such as 

u s2        v t2  
 
So if s and t are arbitrary integers with b positive, it follows that:  
 

u v       s t  
 
 

                                                           
32 see for instance Keith Devlin:  The Language of Mathematics:  Making the Invisible Visible.  W.H. 
Freeman & Co., New York, 1998. 
33 O. Neugebauer:  The Exact Sciences in Antiquity.  Dover, NY  1969, p. 41 
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fig. 78
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Finally, from (1) and (2) we see that we can write: 
 

a s2 t2;   b s2 t2;   c 2st; 
 
The rest follows, with s and t varying over all natural numbers and such that: 
 

1.  s t
2. s and t have no common factor 
3. One of s, t is even, the other odd. 

 
The ad quadratum method allows for the direct construction of all Pythagorean triangles 
as shown in fig 78. 
 
To facilitate and generalize the solution, note that the equation x 2 y 2 z 2  can be 
normalized by dividing through by  so that: z2

With     
x

z
x  and 

y

z
y  

We can write:        x 2 y 2 1 
 
If the solution is x=a, y=b, z=c with a, b, c whole numbers, then 

x 
a

c
,  y 

b

c
,  

with    
a

c
 and 

b

c
 both rational numbers. 

 
For instance, starting with  

(3)2 (4)2 (5)2 ,  
 
we have     

3

5

2
4

5

2

1 

 
Now x 2 y 2 1 is the equation of a circle, of radius unity and center at the origin in a 
Cartesian x ,y  coordinate system.  (see fig. 67 and 78; the coordinates have been 
relabeled x and y to conform to standard notation.) 
 
The problem is to find points such as Q on the circle such that triangles OQQx  form a 
Pythagorean Triple, i.e., the coordinates of Q (i.e., Qx  and Q ) must both be rational. y

 
Considering the triangles PTO and PQQx , we have:  

OT

OP

QQx

PQx

 

 
Or, since   OP=1, QQx y  and PQx 1 x  
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OT
y

1 x
 

 

So that, if OT is a rational fraction, so will 
y

1 x
, and if x is even, y will be odd and 

conversely, also OT 1.  All the Pythagorean triangles can therefore be established in the 
oxy quarter by choosing point T such that OT is any rational fraction between 0 and 1. 
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Ad Quadratum and Music 
 
Music and World View: 
 
Pythagoras is generally credited for introducing mathematics into music, i.e., associating 
intervals between pitches with ratios of numbers representing frequencies or lengths of 
resonating devices such as taut strings or wind pipes. 
 
However, the idea is, in all probabilities, much more ancient.  Sumerian, Babylonian, 
Egyptian, Chinese civilizations show evidence that music, very early, was related to the 
concept of number34.  By Plato’s time music had evolved into two distinct and virtually 
separate branches – one practical, having to do with musical performance, the other 
theoretical, consisting of the study of the mathematical relationships between tones, or 
more generally proportion.  
 
The relationship between numbers and acoustical phenomena seems to have given the 
ancients the notion that all other phenomena were also governed by numbers35.  Music 
being the most advanced science of the time, most other aspects of human experience 
were cast according to its model, as in our own age, physics has been used as a paradigm 
for most other branches of knowledge, a function that biology now seems poised to take 
over. 
 
It is the existence of such paradigms, which provides a degree of unity and coherence to 
the world views that dominate historical periods.  For instance, the dominance of musical 
models36 from antiquity to well into the 17th Century in the mentalities of philosophers, 
theologians, astronomers and astrologers as well as mathematicians, architects and 
physicians made plausible the concept of universal harmony.  Boethius (c. 480-524) is 
among the first to have explicitly presented this idea through his division of music in 
three types:  musica mundana, or music of the universe,  describing the movement of the 
celestial spheres; musica humana, or music of the human being, expressing the 
correspondence between soul and body; and musica instrumentalis, instrumental (and 
vocal) music.  Only the last is concerned with acoustic phenomena while the other two 
relate to proportions and intellectual harmony. 
 
The human mind being so designed that it seems perpetually in search of a unifying 
viewpoint to conceptualize its experience, found in the musical model an enduring and  

 
34 McClain, Ernest G.  The Pythagorean Plato.  Nicholas-Hays, York Beach (Maine) 1978. 
35 Dae- Am Yi.  Musical Analogy in Gothic and Renaissance Architecture.  Unpublished Ph.D. thesis, University of 
Sydney, 1991. 
36 “The eternal universe, originally without order and in all that pertained to it formless and devoid of all things that 
are most clearly distinguished according to the categories of quality and quantity and the rest, was rendered discrete 
by number as the most sovereign and artistic form, and its elements were given a most distinctive organization and it 
came to partake of harmonious variation and perfect congruity in accordance with its affinity for and imitation of the 
unique properties of music.” De Falco 44.7, [Iamblichi] Theologoumena Arithmeticae.  Pp. 33-34, Leipzig, 1932.  To 
Robert Fludd (Utriusque Cosmi, 1619) the monochord is “the most exact symbol of the nature of the world and the 
figure of truth itself” (Amman:  The Musical Theory and Philosophy of Robert Fludd, pp. 223-224) and to Kepler it is 
all part of a Universal harmony (Harmonices Mundi). 
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fruitful paradigm. For more than two millennia this paradigm allowed what came to be 
known as the quadrivium (the four-way), i.e., a curriculum of arithmetic, geometry, 
music, and astronomy to be presented as a coherent system, providing a world view and a 
framework for teaching as well as for scientific, metaphysical, philosophical and 
theological speculations. 
 
In this, arithmetics was seen as the study of number, pure and in itself, number at rest so 
to speak, the basis underlying all other sciences.  In turn, Geometry was the study of 
number in space (i.e., magnitude at rest); music, number in time and astronomy, number 
in time and space, or in our current idiom, magnitude in motion or kinematics, from 
which naturally arose the notion of harmony of the spheres. 
 
The approach is not unlike that taken in classical science where algebra is the study of 
quantity and relation between quantities, geometry, of quantity in space such as length, 
giving rise to surfaces, volume, and their relations, while kinematics adds to it the 
element of time.  Statics substitutes mass for time; dynamics combines length, time, and 
mass; thermodynamics adds the notion of temperature, and electrodynamics, the notion 
of electrical charge, so that all phenomena studied in these branches of science are 
reducible to expressions involving only L (length), T (time), M (mass), C (degree 
Celsius), and e (electron charge) as the case may be. 
 
In the ancient viewpoint, therefore, number and proportion, i.e., music, pervaded all 
learning and formed the basis of a rational system establishing correspondences, 
resonances, and analogies between phenomena.  The relative distances of planets from 
one another were thought to be the same as those of the notes of musical scale; Ptolemy 
(2nd century AD) used musical ratios to correlate the intellectual, perceptive and 
animating functions in Man, thus: 
 

“The octave is attuned to the intellectual part, since in each 
of these there is the degree of simplicity; the fifth to the 
perceptible part; and the fourth to the animating part.  For 
the fifth is closer to the octave than is the fourth, since it is 
more concordant…”37 

 
 
Music and the Platonic forms: 
 
Musical tones and their afferent string length on a monochord are associated with simple 
numerical ratios as those we have seen in the determination of the inner structure of the 
platonic forms, lending plausibility to the analogy between geometry and music. 
 
For example, the most fundamental ratio in music is the octave defined by a doubling (or 
halving) of frequency or a halving (or doubling) of string length on a monochord, 
respectively.  As we have seen, this 2:1 ratio is typical of the icosahedron internal angle. 

 
37 Ptolemy, Harmonica III,V, tr. in Andrew Barker (ed), Greek Musical Writings.  Cambridge, 1989, vol. II, 
p. 375. 
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Similarly, the octahedron is characterized by the ratio 1:1, which represents unison in 
music, two instruments or voices sounding together at the same pitch.  In turn, the cube 
internal angle ratio is 1/3.  Musically, if we divide the string length by 3 and therefore 
multiply the frequency by 3 we have the twelfth (i.e., an octave plus a fifth or the G of the 
upper octave G’).  For the Dodecahedron, characterized by the ratio 2/3 (or 3/2) for its 
internal angle we obtain musically 3/2 (in pitch) indicative of the fifth (G). 
 
Given the regularity of the platonic forms, other simple ratios characteristic of pure 
musical tones will appear quite naturally.   
 
For instance, consider the various whole numbers characterizing the different Platonic 
forms: 
 
 
 
 
 Tetrah. Cube Octah. Dodec. Icosa. 
# of faces 4 6 8 12 20 
# of vertices 4 8 6 20 12 
# of edges to a face 3 4 3 5 3 
# of edges to a vertex 3 3 4 3 5 
# of faces at a vertex 3 3 4 3 5 
Total # of edges 6 12 12 30 30 
 
These numbers give rise within each form to musical ratios in addition to those just 
mentioned previously, so that we have: 
 

For the tetrahedron: 
4

4
1 (unisson); 

4

3
 (fourth); 

6

4

3

2
 (fifth); 

6

3
2 (octave) 

 
For the cube and the octahedron: 

3

3
1 (unisson); 

4

3
 (fourth); 

6

4

3

2
 (fifth); 

6

3

8

4
2 (octave)  

12

4
3 (twelfth: octave + fifth); 

8

3
 (thirteenth = octave + sixth) 

12

3
4  (double octave) 

 
For the dodecahedron and the icosahedron we obtain two sets of ratios, one 

pertaining to the Pythagorean tuning and the other to the so-called Just intonation.  These 
two scales will be explained subsequently. 
 
 
In the Pythagorean tuning we have: 
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5

5

3

3
1 (unisson) 

 
30

20

3

2
 (fifth) 

 
20

5

12

3
4 (double octave) 

 
And in the Just intonation tuning: 
 
20

12

5

3
 (sixth) 

 
30

5
6 (double octave + fifth) 

 
30

3
10 (triple octave + third) 

 
 
We should remark that these numerical ratios characteristic of musical tones do not have 
anything to do with the acoustical properties that bodies made of say metal in the form of 
the platonic solids would exhibit.  The ratios or proportions we are considering are purely 
mathematical in nature.  They exist in the platonic forms and therefore in the design of 
the millennium sphere as they are contained in the geometry of Gothic Cathedrals or 
Renaissance buildings, silently resonating in mind, not in air. 
 
We now turn our attention to the construction of the Pythagorean and Just intonation 
scales.  We shall later consider their relation to the ad quadratum construction.  Both 
scales were known to the Ancients.  However, just intonation did not come in musical use 
till the Renaissance with the development of polyphonic music. 
 
Pythagorean scale: 
 
The remarkable thing about the Pythagorean musical scale and the adquadratum method 
of generating the platonic forms is that they both rely on the first three integers 1, 2, and 
3. 
 
The Pythagorean scale is based on the pure fifth (3:2) and derived in two stages38. 
 
In the first movement, starting from an arbitrary note (referred to as c) and adding five 
fifth above and one below, we obtain 
 

                                                           
38 Dae-Am Yi, op. cit. 
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F G A B / c d e f g a b / c’ d’ e’ f’ g’ a’ b’ / c” d” e” f” g” a” b” 
 

The frequency ratio of a fifth is 
3

2
 so that the above sequence of fifths spanning more 

than three octaves can be rewritten, assigning 1 to c: 
 

F c g d’ a’ e” b” 
3

2

1

 
1 3

2
 3

2

2

 
3

2

3

 
3

2

4

 
3

2

5

 

2

3
 

1 3

2
 

9

4
 

27

8
 

81

16
 

243

32
 

 
In the second movement of building the scale, this set of notes is compressed within the  
span of an octave.   The first step in this process is to rearrange the notes according to 
note name, regardless of actual pitch so that we obtain: 
 

c d’ e” F g a’ b” 
1 9

4
 

81

16
 

2

3
 

3

2
 

27

8
 

243

32
 

 
The next step is to shift the notes by the appropriate number of octaves so that they all fit 
within a single octave (1 to 2). 
 

For example, for b”, ratio 
243

32
, to come within the octave c c’ (1 to 2), it must be shifted 

down two octaves (i.e., multiplied by 
1

2
2

1

4
). 

 

Then b = 
243

32

1

4

243

128
 

 

Similarly F, ratio 
2

3
, has to be lifted up by one octave to come within the 1 to 2 octave: 

 

f= 
2

3
2

4

3
 

 
 
When all notes have been dealt with, we end up with the following scale: 
 

c d e f g a b c’ 
1 9

8
 

81

64
 

4

3
 

3

2
 

27

16
 

243

128
 

2 
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fig. 79
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Which gives the intervals with respect to the starting note c, so that the second or tone (d-

c) is 
9

8
, the third (e-c) is 

81

64
, the fourth (f-c) is 

4

3
, the fifth (g-c) is 

3

2
, the sixth (a-c) is 

27

16
, the seventh (b-c) is 

243

128
, and the eighth or octave (c’-c) is 2.   

 
To establish the intervals between the notes, it is sufficient to calculate the frequency 
ratio between them.  Thus: 
 
 
 
 

      d to c: 
9

8
:1

9

8
 

 

   e to d: 
81

64
:

9

8

9

8
 

 

f to e: 
4

3
:

81

64

256

243
 

 

      g to f: 
3

2
:

4

3

9

8
 

 

    a to g: 
27

16
:

3

2

9

8
 

 

 b to a: 
243

128
:

27

16

9

8
 

 

c’ to b: 2 :
243

128

256

243
 

 
 

The Pythagorean scale consists therefore of five whole tones 
9

8
 and two semitones 

256

243
, also called by their Greek names as leimma or diesis. 

 
The Pythagorean scale can therefore be represented on the staff as shown on fig. 79. 
 
In Pythagorean tuning only the octave (2:1), the fifth (3:2) and the fourth (4:3) were 
considered to be consonances.   
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 The difference between a whole tone 
9

8
 and the semitone 

256

243
 is 

 
9

8
:

256

243

2187

2048
1.06787 

 
The double process used in establishing the Pythagorean scale (addition by fifths and 
reduction by octaves) leads to a problem since it is impossible to have the two processes 
converge to a single note, i.e., the fifths expanding in either direction never meet the 
octave. 
 
Mathematically, if the fifth added x times and the octave added y times would meet, one 
could write: 

3

2

x
2

1

y

 or 3x 2x y  

 
with x and y, both integers. 
 
Taking the logs 

x log 3 = (x+y) log 2 
or x (log 3 – log 2) = y log 2 

x

y

log2

log3 log 2
1.7095...  

 
Clearly therefore if either x or y is an integer, the other one is not, which is contrary to 
what is required, 
 
e.g.,      when y=7    x=11.966 
 

The closest integers are 7 and 12. 
 

The difference between the two pitches, i.e., the one corresponding to the note obtained 
after 7 octaves and that after 12 fifth is 

2
7

:
3

2

12
219

312  

 
524288

531441
0.98654 1 

 
This is known as the Pythagorean comma.  As long as a melody evolves within an octave, 
or nearly so, as in Gregorian chants for example, there is no problem.  Difficulties arise in 
polyphonic music when voices are separated by 2 or more octaves:  if the interval 
between notes is maintained as the voices move across octaves, then the octave notes will 
not coincide or conversely if the octaves are maintained, the interval between notes will 
not coincide.   
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fig. 80

fig. 81
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In either case, consonance is lost.  The resolution was eventually found in the Tempered 
scale popularized by J.S. Bach in the early 18th century.  The Ancients knew of it39 but 
they also knew the importance of finding one’s limits and always kept their melodies 
within proper bounds so as to not have to tamper with either intervals or octaves.  The 
problem was solved by spreading the comma across the octave by dividing the octave 
scale in 12 equal tones.     
 

Pythagorean tuning had another problem and that was the discordance of the third 
81

64
.  

Remember that only the fourth and the fifth, together with the octave and unisson were 
considered as concordances by the Pythagoreans. 
 

To remove this discordance, just intonation, which replaced the Pythagorean third 
81

64
 

by the natural third 
5

4
, was suggested.  It was not adopted however until the 

Renaissance since the third was avoided in ancient and early medieval music as was 
pointed out earlier. 
 
We shall return to Pythagorean tuning and its relation with the adquadratum construction 
but before we shall address the design of the just intonation scale. 
 
Just Intonation: 
 
As the Pythagorean scale was shown to originate out of the play of numbers 1, 2, and 3 

through the prime (c=1), the octave (c’=2) and the fifth (g=
3

2
), the just intonation scale 

can be constructed through multiplication of division out of numbers 1, 2, and 3 equally, 

the natural third 
5

4
 appearing as a consequence of these multiplications and divisions 

by 2 and 3, as shown on fig. 80.  This is interesting in the sense that the just intonation is 
usually presented as the result of combination of the natural fifth and the natural third.  

(e.g., N 3
2

m
5

4
n

). 

 
Since we can show that only 1, 2, and 3 are involved, it brings Just intonation within the 
scope of the adquadratum construction. 
 
Acoustically, the operation involves the half-cut and the third cut, which can be done 
aurally or visually on a monochord.  The first line of fig. 80 gives the intervals to the 
prime; it constitutes the c-major scale. 
 

                                                           
39 In fact McClain (op. cit. p. 5) claims that Plato’s Republic embodies, from a musician’s perspective, a treatise on 
equal temperament. 
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fig. 82
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The interval between the notes can be obtained as for the Pythagorean scale by 
calculating the ratios: 
 

 d to c             
9

8
 

e to d   
5

4
:

9

8

40

36

10

9
 

f to e           
4

3
:

5

4

16

15
 

g to f             
3

2
:

4

3

9

8
 

a to g            
5

3
:

3

2

10

9
 

b to a   
15

8
:

5

3

45

40

9

8
 

c’ to b           2 :
15

8

16

15
 

 

The Just intonation has therefore two different whole tones namely 
9

8
 (major) and 

10

9
 

(minor) and the semitone is 
16

15
.  Since the minor scale starts on a, we see that the interval 

of the third in that scale will be 
6

5
, and that of the sixth 

8

5
. 

 
On the staff, the Just Intonation is as shown on fig. 81: 
 
Adquadratum construction of the Pythagorean consonances: 
 
Ptolemy in his Harmonica gives us a construction for the Pythagorean consonances based 
on the square known as the Heliconian Square40. 
 
The square ABJH shows the frequency ratios (i.e., inverse string length ratios) in 
Pythagorean tuning by its geometrical proportions.  As seen on fig. 82, this square results 
directly from the adquadratum construction. 
 
Triangles GAN and JBN are similar, so that: 
 

GA

JB

AM

MB

1

2
 

 

Therefore     2AM = MB or AM
1

3
AB , 

letting      AM MB 1 
                                                           
40 Dae-Am Yi, op. cit. p. 14 
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fig. 83
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We can also write:   
MN

ML

1

3
 and 

LN

LM

2

3
 

 
And the following ratios can therefore be read off the graph. 
 

JH

LH

3

1
  A tripling of frequency => a twelfth (g’) (sol’) 

         = octave + fifth 
 
     (7+5) in terms of position 

2
3

2
3  in terms of frequencies. 

 
 

HA

HG

2

1
  The octave ratio (c’) (do’) 

 
LM

LN

3

2
 (ascending fifth)   (g)  (sol) 

 
EK

EF

4

3
 (ascending fourth)  (f)  (la) 

 

LN

FK

2
3

1
4

2

3

4

1

8

3
  (octave + fourth) (f’) (fa’) 

 
EK

FK

4

1
4    (double octave)  (c’’)  (do’’) 

 
All elements to build the Pythagorean scale are therefore at hand.  The graphical scale 
shown on fig. 83 indicates the ratios just obtained.  Those missing, shown in brackets, are 

easily obtained since the value of the tone 
9

8
 is known thus: 

e
9

8

9

8

81

64
;   a

3

2

9

8

27

16
;   b

27

16

9

8

243

128
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fig. 84
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Ad Quadratum and the Just Intonation Scale: 
 
As we have seen, the frequency ratios of the just intonation scale have been shown to be: 
 
 
 
c d e f g a b c’ 
do re mi fa sol la si do’ 
1 9

8
 

5

4
 

4

3
 

3

2
  

5

3
 

15

8
 

2 

 
 
Since frequencies vary in inverse ratios to string lengths on a monochord (assuming 
constant tension in the string), the string length ratios can be readily obtained as: 
 

1    
8

9
    

4

5
    

3

4
    

2

3
    

3

5
    

8

15
    

1

2
 

 
The Ad Quadratum method allows a geometrical determination of the movable bridge 
positions on the monochord as shown on fig. 84. 
 
We again consider square ABJH of figure 71 and 82, that we have isolated and enlarged 
on figure 84. 
 
The left hand side of the figure, namely the double square HEKA shows the construction 

of the harmonic series   1,  
1

2
,  

1

3
  

1

4
, etc…. 

 
i.e., the series of the inverses.  This series is harmonic in the sense that any term is the 
harmonic mean of its two adjoining terms41. 
 

The string lengths are obtained by a simple compass swings.  e.g., by swinging 
1

9
 around 

to the right, the segment left to the right between the compass lead and point 0 will be 
8

9
, 

similarly for 
4

5
,  

3

4
,  

2

3
,  and 

1

2
. 

 

                                                           
 
 

41 e.g., if c is the harmonic mean between a and b then 
ab

ab
b

ab

ab
a 1 1  c
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For 
3

5
 and 

8

15
, having respectively 

1

5
 and 

1

15
 from the harmonic construction, it is 

necessary to just measure out 
2

5
 and 

7

15
 respectively on the left with the compass and 

swing the measurement to the right to find the proper location. 
 
 
 
 
Conclusions: 
 
The generating process for both the Pythagorean and the Just intonation scales starts with 

the prime (one) and uses only 2 and 3 – under the form of the fifth 
3

2
 for Pythagorean 

tuning and the half-cut and third-cut for Just intonation.  Number 4 comes out of the 
generating process through inversion of the F, in Pythagorean tuning, to bring it within 
the octave 1 to 2, and through the third cut (harmonic mean) is Just intonation. 
 
Similarly, in the adquadratum method for generating the platonic forms, only 1, 2, and 3 
are used with 4 appearing only as a result of the tetrahedron construction, measuring its 
height within a circumsphere of radius 3 and encompassing an insphere of radius 1.  This, 
in turn, gives rise to number 9 (ratio of the areas of the circumsphere to the insphere) and 
27 (ratio of their volume) so that all the numbers out of which Plato compounded the 
world soul, namely 1, 2, 3, 4, 8, 9, and 27 are to be found in the generation of the 
tetrahedron, the simplest of the platonic forms. 
 
The numbers 1, 2, 3, and 4 whose sum is 10 form the celebrated Tetraktys of the 
Pythagoreans.  Out of these simple numbers, as we have seen, the consonant ratios of the 
octave (1:2), the fourth (3:4), the fifth (3:2), the double octave (1:4) and the twelfth, i.e., 
the octave plus a fifth (1:3) can be formed. 
 
The Tetraktys, furthermore, symbolized the universal structure, starting in unity – one – 
the point, moving to 2, the one-dimensional line; 3, the two dimensional triangle, and 4, 
the tetrahedron, the first three dimensional form.  It eventually returns through its sum to 
unity, Ten.  In this respect it is amusing to indulge in a bit of Pythagorean numerology by 
remarking that if we sum up all the elements of the five Platonic forms as listed on 
p. 130, we obtain a total of 244, the integers of which sum up to 10, i.e., again unity, 
while their product comes to 32 whose product is 6, the first perfect number, since 

, ha! 1 2 3 1 2 6
 
No wonder the Ancients were awed by such perfection.  As Theon of Smyrna42 puts it: 
 

“Unity is the principle of all things and the most dominant 
of all that is:  all things emanate from it and it emanates 

                                                           
42 Theon of Smyrna:  Mathematics Useful for Understanding Plato. Tr. By R&D Lawlor, San Diego 1979. 
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from nothing.  It is indivisible and it is everything in power.  
It is immutable and it never departs from its own nature 
through multiplication (1 1 1).  All that is intelligible and 
cannot be engendered exists in it:  the nature of ideas, God 
himself, the soul, the beautiful and the good, and every 
intelligible essence, such as beauty itself, for we conceive 
of each of these things as being one and as existing in 
itself.” 

 
“Greek musical theory is founded on the so-called ‘musical proportion’, which 
Pythagoras reputedly brought home from Babylon,” writes McClain43.  “It is this 
proportion which exemplifies the science Plato labels Stereometry (the gauging of solids), 
 

‘a device of God’s contriving which breeds amazement in 
those who fix their gaze on it and consider how universal 
nature molds form and type…a gift from the blessed choir 
of the Muses to which mankind owes the boon of the play of 
consonance and measure with all they contribute to rhythm 
and melody.’ 

(--Epinomis 990-991.) 
 
 
 
The Aural and the Visual – Esthetic of Proportion: 
 
For the Ancients, from Pythagoras and Plato down, the appreciation of beauty was linked 
with that of proportion however perceived.  It was an intellectual experience irrespective 
of its origin in the sensorium.  But it is Augustine (354-430) who developed the concept 
further in his theory of aesthetics with the notion of synesthesia.  Here, visual and aural 
sensations are combined since they, as well as other motions, all depend on numbers.  It 
is these numbers, appreciated by the mind, that are ultimately the source of the 
experience. 
 

“Whether they are considered in themselves or applied to 
the laws of figures, or of sound, or of some other motion, 
numbers have immutable rules not instituted by man but 
discovered through the sagacity of the ingenuous.”44 

 
To Augustine, music is scientia bene modulandi i.e., the science of good modulation  
 

“concerned with the relating of several musical units 
according to a module, a measure, in such a way that the 

                                                           
43 McClain, Ernest:  The Pythagorean Plato. P. 8.  Nicholas Hays 1978. 
44 Augustine:  De Doctrina Christiana, II XXXViii, 56.  tr. D.W. Robertson, Jr., Indianapolis, 1958, p. 73. 
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relations can be expressed in simple arithmetical 
ratios….1:1, 1:2, 2:3, 3:4.”45 
 
“Beautiful things please by proportions…equality is not 
found only in sounds for the ear and in bodily movements, 
but also in visible forms…”  says Augustine.46 

 
Centuries later, Leonardo da Vinci would write47: 
 

“I give the degrees of the objects seen by the eye as the 
musician does the notes heard by the ear.” 

 
…thereby introducing perspective as an analogy to musical harmony, and Kepler would 
add48: 
 

“The mathematics of the senses, if they are recognized, 
excite an intellectual mathematics, previously present to the 
inner man, such that there actively lies within the soul what 
beforehand was hidden beneath the veil of potentiality.” 

 
This visible form of harmony manifested through modules is evident for instance in the 
simple arrangements of a row of evenly spaced columns or trees (or the ties of a railroad) 
perceived as a harmonic series (see fig. 85).  Here a constant frequency on the ground, 
mathematically expressed as an arithmetic series (the equal spacing between trees is 
additive) is transformed through the eye or the pinhole of a camera oscura by the effect 
of perspective (projection on the retina or the plate of the camera) into an harmonic series 
(each term, i.e., length of the column, tree or tie appears to be the harmonic means of its 
two adjoining terms) i.e., the frequency appears to get compressed more and more as the 
distance between items seems to keep on decreasing. 
 
Referring to fig. 85, we assume for simplicity’s sake unit distance between columns (or 
trees or ties), i.e., O’A’=A’B’ etc., columns two units tall, i.e., AA’=2O’A’ etc., and 

observation point O (pinhole) at midheight, i.e., OO 
AA 

2
 .  Now consider triangles 

OAA’ and OPP’; OBB’ and OPBP 'B ; OCC’ and OPC 'P 'C ; ODD’ and OPD'PD ; they are 
respectively similar.  We can therefore write in turn: 
 

 

                                                           
45 Von Simson, Otto, The Gothic Cathedral.  Princeton/Bollingen, 1974. p. 21. 
46 De Musica VI, xiii, 38. 
47 The Notebooks of Leonardo da Vinci. Jean Paul Richter; 102 Vol. I. Dover, NY, 1970 
48 Kepler, J. Gesammelte Werke, W. von Dyck et. Al. Ed. Munich, Beck, 1938. p. 226, Vol. 6.  Quoted in 
Hallyn, op. cit. p. 171. 
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AA'
OA1

2
1

   =    
PP'
OP1

        PP' 2 1

BB'

OB1

2

2
   =    

PBP B
OP1

    PB P B 2
1

2
   OP1 1

CC'

OC1

2

3
   =    

PC P C
OP1

     PC P C 2
1

3

DD'
OD1

2
4

   =    
PDP D
OP1

     PDP D 2
1
4

 

 
 

Now, projections on plane PP’ are inverted and can be considered as projection on the 
plate of a camera oscura or the retina (assuming it flat).  Different focal distances can be  

fig. 85

fig. 86
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accounted for by other projection planes such as xx’ .  The geometry remains the same.  It 
is therefore obvious that a row of columns of same heights AA’, BB’, etc., equally spaced 
on the ground (i.e., in arithmetical series from a point of origin 
OA1 1,  OB1 2,  OC1 3,

1

2

 etc.) appears on the projection plane PP’ as an harmonic 

series: K ,  
1

3
, 

1

4
...  where K is an arbitrary factor depending on the height of the 

columns with respect to their spacing.49 
 

Note  (fig. 86) that the product of the distance of a point on the ground from the point of 
observation, i.e., 1, 2, 3, ….n…and the corresponding projections of the half column 

height on the projection plane 1, 
1

2
, 

1

3
...

1

n
... have a geometric mean of unity. 

 

i.e., 1 1 1,  2
1

2
1,  n

1

n
1  

 
Taking an anagogical viewpoint dear to the medieval, one could say that one, the image 
of God in mind, remains ever the same and equal to unity irrespective of position.  The 
geometric mean constitutes therefore some kind of an invariant connecting a point to its 
projection. 

 
Also, as seen before in our consideration of the relationship between string length in the 

monochord and frequency, it is apparent that visually the harmonic series 1, 
1

2
, 

1

3
, 

1

4
 

generates the string length series required to produce the Pythagorean consonances or 

“fixed tones” of the third 
3

4
 the fifth 

2

3
 and the octave 

1

2
 as shown on fig. 87, or 

indeed the whole Just intonation scale as shown on fig. 84, justifying Leonardo’s remark 
quoted earlier. 

 
An interesting point made by McClain50 is that, 
 

 “for Plato, sight – not hearing – is the cause of the highest 
benefit to us.”(Timaeus 470).  He speaks of those who fix 
their gaze on his example – ‘The constant revolution of 
potency and its converse’ – using words which warn us that 
number and tone must be translated into geometric 
imagery, and revealing that his own primary image is the 
circle, purest embodiment of the notion of cycle.”   

 
(see circle of tones in fig. 87.) 

                                                           
49 Of course slight complications occur when the height of the observation point changes with respect to the columns, 
but we are not here writing a treatise on perspective. 
50 McClain, op. cit. p. 9. 
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fig. 87
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Notwithstanding Plato, there is an interesting observation that can be made here to the 
effect that the ear works in a somewhat opposite direction to the eye.  Whereas an octave 
in a low frequency range or a higher one such as that of a tenor or a soprano appear to 
span the same aural (or acoustical) space and be additive (one sitting on top of the other) 
being then perceived as an arithmetical progression, their production results from a 
geometric progression through doubling of frequency across each octave. 

 
i.e.,  octave 1   octave 2   octave 3 

        
2

0
   2

1
         2

2
             2

3
...... 2

n

1          2            4                  8     ..........
 

 
As the octaves go up, more and more frequencies are compressed within the 
corresponding octave.  Here, the relationship between what is heard and what is produced 
is therefore logarithmic.  This is the result of the design of the inner ear.  This fact has the 
interesting result of increasing considerably the range of audible frequencies for the same 
ear size.  It is a device that maintains virtually the same discriminatory tone sensitivity 
within a wide range. 

 
So, as the ear perceives linearly (or additively) what is physically harmonic, they eye, as 
we have seen, perceives harmonically what is physically linear.  It is as if eye and ear 
worked together in harmony to present the mind with an image of external “reality” 
unitive, corrected and compensated for the deformations inherent in their very design.  
Again, the Ancient and Augustine may have had a point:  what matters is the total 
experience, when all the senses work together “synesthesiacally.” 
 
Another point worthy of notice is that whereas sight spans approximately one octave of 
frequencies in the electromagnetic field, hearing spans close to 10 octaves of sound 
frequencies, making the ear a more discriminative instrument than the eye.  It may also 
be remarked here that certain traditions such as the Indian tradition (Vedic) emphasize 
hearing over sight, contrary to the Greek.  It is also a fact of experience that sight is more 
the instrument of the intellect and hearing that of the heart.  Hence the importance of 
chant in spiritual work, but perhaps also a clue to the difference of spirituality between 
the East and the West and of the efficacy in bringing the two together through iconic and 
chant worship as in the Christian Orthodox tradition. 
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Ad Quadratum, the Millennium Sphere, and Astronomy 
 
As mentioned in the section on Music and World View51, the ratios that the ad quadratum 
method establishes and which are at the basis of musical structures find echoes in the way 
the cosmos was understood in ancient as well as classical times.  This represents an 
unbroken tradition of nearly two millennia of cosmological thinking in musical terms. 
 
As a sample of such thinking we may look at Johannes Scotus Erigena (c. 810-880).  
Though bold in his philosophical and theological propositions, Scotus was not an original 
thinker in either astronomy or music, but he used his knowledge of both to frame his 
philosophical and theological reflection particularly in connection with the process of 
creation.  He can also be taken as perhaps among the best-educated minds of the early 
Middle Ages52. 
 
Music for him is 
 

“That discipline which in the light of reason contemplates 
the harmony of all things, whether they be in movement or 
in a status of discernable perseverance, and combined in 
natural proportion.”53 

 
The harmony of heaven as well as of the world depends on mathematical proportions.  
From earth to sun there is one octave and from sun to firmament another.  Between earth 
and moon there is a whole tone.  Each planet corresponds to one tone: 
 

“The ethereal circle turned the starry sky, which went in 
circles round the world.  In manifold advance the 
consonant crowd of planets moved, emitting sweet whole-
tones, six in number, [with] seven intervals and eight 
tones.”54 

 
Basically this same scheme will obtain till Copernicus and Kepler.  The ad quadratum 
method that gives the musical ratios supplies therefore the basic cosmological 
information that these systems of astronomy embodied. 
 
The Millennium Sphere (fig. 88), imbricated growth spirals of tetrahedron and cube, 
complemented by arcs of great circles circumscribing octahedron, icosahedron, and 
dodecahedron, though not a strict representation of the heavens, is however more than 
symbolic.  Its spirals of growth literally let polyhedra of all sizes fit within its structure so 
that for instance Kepler’s nested platonic forms of the orbits of the planets can find their  

 
51 See also above under 1. Historical Perspective in the section on Alternative Methods of generating the 
Platonic Forms. 
52 Some of luminaries succeeding him will be Gerbert d’Aurillac (c. 940-1003), who became pope as 
Sylvester II, and Fulbert de Chartres (d. 1020). 
53 Quoted in Nils L. Wallis:  Geometry, Arithmetic and Musical Creation in Window on Creativity and 
Invention, Lomond Publications, 1988, pp. 89-110. 
54 Ibid.  
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own positions in it.  Kepler’s idea, illustrated on his famous Planetarium (fig. 60) 
published in his Mysterium Cosmographicum, was that the solar system was so organized 
that the spheres of the orbits of the planets and the platonic forms constituted a 
concentric, nested set, each touching its inner and outer neighbors.  Kepler found in this 
an explanation for the number of the planets (6 known at the time):  “There could only be 
6 planets because there were only five regular solids.”  In his preface Kepler further 
writes: 
 

“The Earth is the circle which is the measure of all.  
Construct a dodecahedron round it.  The circle 
surrounding that will be Mars.  Round Mars construct a 
cube.  The circle surrounding that will be Saturn.  Now 
construct an icosahedron inside the Earth.  The circle 
inscribed within that will be Venus.  Inside Venus inscribe 
an octahedron.  The circle inscribed within that will be 
Mercury.  There you have the explanation of the number of 
planets.”55 

 
His theory agreed well with Copernicus’s figures and he attributed the discrepancies to 
minor errors in Copernicus’s values for the eccentricities and radii of the orbits. 
 
The Millennium Sphere with its nested polyhedra is therefore a monument to Keplerian 
astronomy as well as to more ancient astronomy with its small central sphere capsule 
symbolic of the central Earth theory surrounded by the orbs of the planets and the sphere 
of the stars. 
 
Of course, Kepler’s scheme, though a new version of the old nested-spheres, was 
radically different through its reversal of Earth and Sun positions, but the fundamental 
concepts remained within the same framework.  For him, music was still the coordinating 
force of the cosmos.  In his five volumes on world harmonies (Harmonices Mundi, 1619) 
he explains:56 
 

“Pour air in the heaven, and a real and true music will 
sound.  There is a ‘spiritual harmony’ (concentus 
intellectualis) that gives pleasure and amusement to pure 
spiritual beings and in a certain sense even to God himself, 
not less than to man with his ear devoted to musical 
chords.” 

 
Further, he adds: 
 

“The heavenly motions are nothing but a continuous song 
for several voices, to be perceived by the intellect, not the 
ear; a music which, through discordant tensions, through  

 
55 Quoted in James Evans:  Ancient Astronomy, Oxford U.P. 1998, (tr. Duncan p. 69) 
56 Johannes Kepler, Harmonices Mundi, Book V, Chapter 7. 
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syncopations and cadenzas as it were, progresses toward 
certain pre-designed six-voiced cadences, and thereby sets 
landmarks in the immeasurable flow of time.” 57 

 
In 1952 the composer Paul Hindemith, who based his opera Die Harmonie der Welt on 
the life of Kepler, wrote: 
 

"The science of music deals with the proportions objects 
assume in their quantitative and spatial, but also in their 
biological and spiritual, relations.  Kepler's three basic 
laws of planetary motion...could perhaps not have been 
discovered without a serious backing in music theory.  It 
may well be that the last word concerning the 
interdependence of music and the exact sciences has not yet 
been spoken."58 

 
The Millennium Sphere as an artifact is therefore emblematic of the universe or Cosmos 
as conceived through a long tradition.  As such, it inscribes itself in the ancient practice 
of sphairopoiia59 or sphere-making.   
 

Thales of Miletus (6th C. B.C.) is said to have been the first to represent the heavens with 
a sphere.  Plato in the tenth book of the Republic and in the Timaeus describes the 
universe as if he had a mechanical model under his eyes and Theon of Smyrna60 (c. 115-
140 AD), commenting on Plato, explicitly says that he himself “constructed a sphere 
according to his (Plato’s) explanations.”  Together with gnomics (the making of sundials) 
and dioptrics (the design and use of sighting instruments), sphairopoiia was a recognized 
branch of technical writings on mechanics.  It reached a very high level with Archimedes 
(c. 250 BC).  Spheres in the image of the heavens led to the development of orreries and 
armillary spheres showing the movements of the planets with respect to a fixed central 
earth.  Armillary spheres became very popular during the Renaissance, at the time of the 
voyages of exploration. 
 
From a more modern viewpoint, the Millennium Sphere with its inner spiral arms 
serpenting within its volume is a reminder of the countless galaxies of the Universe as we 
now conceive it; its criss-crossing arcs circling around its center another reminder of the 
intense human presence surrounding the Earth both on its surface and in space:  routes of 
ships and planes, orbits of satellites, crafts of all sorts shuttling round the planet to build 
wealth and knowledge at an ever-rising pitch as swarms of bees around a pollen laden 
flower. 

 
57 Ibid. It may be noted here that Kepler was a contemporary of Palestrina and Vittoria, the Renaissance 
polyphonists and was himself a musician well-acquainted with the music of his time. 
58Quoted in J. Rodgers & W. Ruff: Kepler's Harmony of the World:  A Realization of the Ear.  American 
Sci. vol. 67, May-June 1979 pp. 286-292. 
59 James Evans op.cit., p. 80 ff. 
60 Theon of Smyrna:  Mathematics Useful for Understanding Plato.  Tr. R. and D. Lawlor, San Diego, 
1979, p. 95. 
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The Millennium Sphere and the Liberal Arts Curriculum: 
 
The early Pythagoreans were reputedly the first to link arithmetic, geometry, music and 
astronomy together, and to organize their teaching into a curriculum61, on which the 
earliest statement came down to us through Archytas, a contemporary of Plato (4th C. 
BC).  That four-fold part of the curriculum to be known later as the quadrivium became 
canonical in the schools of Greece and, through Rome and Boethius (470-525 AD), it re-
emerged in the West with the Carolingian Renaissance. Scotus among others, was one of 
its proponents.  In a document of the ninth Century, the Musica Enchiriadis and its 
commentary by an anonymous author, the Scholia Enchiriadis, we find a good example 
of how early medieval school men thought about these matters.  In a passage of the 
Scholia, we find the following “dialog” in catechismal form between a teacher and his 
student:62 
 

Pupil:  How was harmony born of arithmetic as from a 
mother?  And what is harmony, and what is music? 
Teacher:  We regard harmony to be a mixed symphonia of 
different sounds, altogether dependent on the theory of 
numbers, like all the other mathematical disciplines, it is 
only through numbers that we understand it. 
Pupil:  Which are the mathematical disciplines? 
Teacher:  Arithmetic, geometry, music, and astronomy. 
Pupil:  What is mathematics? 
Teacher:  A doctrinal science. 
Pupil:  Why doctrinal? 
Teacher:  Because it deals with abstract quantities. 
Pupil:  What are abstract quantities? 
Teacher:  Abstract quantities are those embraced only by 
the intellect because they lack material, i.e., physical 
admixture.  And further:  multitudes, magnitudes, their 
opposites, forms, similarities, relations and many other 
things … change when connected with physical substance.  
These quantities are each directly treated in arithmetic, in 
music, in geometry and in astronomy.  It is thus because 
these four disciplines are not skills of human invention but 
important researches in holy works; and they support in the 
most wondrous way acute minds in the understanding of 
Creation. 

 
This four-fold mathematical curriculum, together with the trivium of grammar, rhetoric, 
and dialectic, flourished in the medieval universities and, with it, formed the curriculum 
of the seven liberal arts, providing the foundations for higher studies in philosophy and 
theology.  The ad quadratum diagram can therefore be conceived of as an accurate 
though stylized compendium of the quadrivium since it embodies some of the  

 
61 David Wagner, Ed.:  The Seven Liberal Arts in the Middle Ages.  Indiana U.P. Bloomington, 1983. 
62 Quoted in Nils Wallis’ article in David Wagner, Op. cit. 
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fundamental elements of the four mathematical sciences.   
 
A simple ad triangulum diagram can also be derived to give us the essential structure of 
the trivium as we shall presently see. 
 
These adquadratum and ad triangulum diagrams are doubly important and symbolic to us 
for medieval architects and master-masons relied on similar constructions for their 
designs. 
 
The Millennium sphere crystallizes these constructs in its structure. 
 
The ad quadratum and ad triangulum construction are therefore literally ex-planations, 
i.e., renderings into planes of multidimensional events or structures.  The Trivium (which 
received its name like the quadrivium only much later with Boethius) has roots going 
back to at least the fifth century B.C.63  With the growth of democracy, oratory in fifth 
century Greece had assumed an increased preponderance.  Sophists, the speech writers, 
coaches, and handlers of the day, more intent like those of today on persuasion than on 
truth, opened schools of rhetoric with claims to teach oratorical skills, with Isocrates, the 
first on record, in the fourth Century B.C.  It is in fact in conscious opposition to their 
influence and to counter their moral relativism that Plato founded his academy. 
 

“For Plato, words express the essence of things grasped in 
thought as concepts.  Words are combined into sentences 
(or prepositions) reflecting the necessary connection in 
reality.  This, in opposition to the sophists’ view that 
language was merely conventional.” 64 
 

However, it is with the Stoics (3rd C. B.C.) that the trivium as such (though not in name 
yet) emerges.  For them logic which they divided into dialectic, grammar, and rhetoric 
formed a unity and a branch of philosophy along with physics and ethics.  Rhetoric 
sought to discover linguistic means of persuasion for all arguments, strategies that would 
work in any disputation while grammar explained the structure of language.  Crates, a 
stoic of the first century B.C. is credited with writing the first systematic Greek grammar.  
We may note here that in India, Pa nini had conceived with his Sanskrit generative and 
prescriptive grammar a much more elaborate system at least three hundred years before.  
 
From the Greeks to the Latins through Martianus Capella and Pliny the Elder (first 
Century A.D.) to the encyclopedists of the fourth and fifth centuries (Donatus, 
Chalcidius, Boethius) and later, Isidore of Seville (d. 636), one reaches the ninth Century 
Carolingian Renaissance with Alcuin and Scotus, and from them, through the Cathedral 

Schools such as Chartres, the 12th century renaissance and the foundation of the 
universities.  Here the liberal arts are fully developed, mastered and clearly become 
preparatory to the study of philosophy and theology.  This foundation of the liberal arts  

                                                           
63 David Wagner:  op. cit. 
64 ibid. 
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fig. 89

fig. 90
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will continue its tradition more or less unbroken up to the 18th century in European 
universities. 
 
Having completed our rapid historical survey of the trivium, we now consider it in 
relation with the ad triangulum construction. 
 
The simplest form to emerge from the 1, 2, 3 explosion in space is the tetrahedron and 
with it, the figure of the triangle.  It is that triangle, the equilateral triangle, which we 
shall take as our basic figure in the ad triangulum construction.  It can also be constructed 
symbolically in our ex-planation as issuing from the point of no dimension, the One, 
radiating into a circle, the Two, within which the Three, appearing as a triangle, sets by 
its form the laws, constraints, and limitations that give shape to Creation.  As we shall 
see, from it will emerge a simple structure that can be taken as symbolic of not only the 
trivium but in fact of any event. 
 
For the Greeks, language had its source in the logos (fig. 88), as for the Christians it was 
in the Word, that Word that was in the beginning….It is therefore represented by a 
dimensionless point, the one.  Expanding into a circle, the Two, it forms within itself the 
Three under the form of the triangle within which another circle inscribes itself.  This, 
then, is the fundamental structure we will use to symbolically represent the structure of 
the trivium.  The large circumscribing circle will represent the field of thought.  The 
vertices of the inscribed triangle will represent respectively Grammar, Dialectic and 
Rhetoric; the circle constrained within the triangle, articulated language; the sides of the 
triangle, constraints which will in turn represent: 
 

Between Grammar and Rhetoric – style 
Between Grammar and dialectic – clear thinking 
Between rhetoric and dialectic – delivery and argument 

 
The radial directions perpendicular to the triangle sides represent: 
 

Between grammar and rhetoric – tradition (past) 
Between grammar and dialectic – invention (present) 
Between rhetoric and dialectic – persuasion (future) 

 
The radius of the inscribed circle is symbolic of the depth of reasoning and along the 
various directions, its degree of clarity, its quality of style and its persuasiveness. 
 
As previously mentioned, the same basic scheme applies to any situation for it is based 
on the structure of the sentence which governs the articulation of thought.  Pa nini, the 
Sanskrit grammarian of the fifth century B.C., introduced the idea of factors of the action 
(Ka raka) of which he identified six as necessary and sufficient to characterize the 
relationships existing in any action. 
 
The action itself is represented by the verb.  On our geometrical symbol (fig. 90) this is 
the large circumscribing circle.  The whole diagram is the sentence standing for the  
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whole action being described.  He then listed successively: 
 

The source of the action or the fixed point in relation to moving away which we 
shall place at the center of the circle; 
The object of the action or item directly reached by the action of the agent which 
we represent as the inner circle; 
The recipient of the action, i.e., the item one has in view through the object.  The 
triangle vertex to the right will be its representation; 
The most effective means of achieving the action represented by the triangle 
vertex at the top; 
The location, and constraints on the action represented by the sides of the triangle; 
The agent or independent factor that does not depend on any other but carries 
within its/his/her self all the knowledge necessary for the action, and is 
represented by the vertex on the left of the triangle. 

 
Note that Pa nini introduces non-linguistic features in his depiction of syntactic meaning 
to establish a correspondence between linguistic construction and non-linguistic fact.  In 
other words, he establishes a viewpoint from which the action may be expressed 
linguistically, i.e., thought out.  As an example, we consider the process of design, also 
viewed as an action and formulated according to the same scheme.  
 
In essence, designing is providing a set of prescriptive rules for reorganizing the 
elements of the environment according to some purpose.  Purpose is determined through 
a dialog between a “designer” and a “client”.  Design is therefore based on a dialectical 
process founded on language. 
 
Designer and client may be individuals or groups.  They may indeed be the same 
individual.  Design is a reflective, iterative, feedback process. 
 
From the dialog arises common goals (Functional Requirements (FR’s)) which are 
refined and made more precise through iterations (fig. 91).  This action takes place in the 
present.  It establishes the viewpoint.  Through reflection, inspiration, experience, 
discussion (the mapping (M)), tentative solutions (design parameters(DP’s)) are proposed 
which satisfy the requirements.  Through a similar dialectical process, designer (D)  and 
client (C) recognize the constraints.  Constraints are of three kinds: 
 

1. Human:  resulting from the dialectical relationship present between designer and 
client.  Being in consciousness, these constraints always manifest in the present of 
the action.  

 
2. Extrinsic:  resulting from the state of the world where the action takes place (law 

physical and human, regulations, traditions, history, etc.).  They are governed by 
the past. 

 
3. Intrinsic:  i.e., imposed by the very nature of the proposed design.  They 

determine its future. 
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This determines the envelope of design and establishes the standpoint from which the 
designer can act. 
 
Thus, the functional requirements (FR’s, fig. 91) constitute the point of departure, the 
design parameters (DP’s) are the object, the client , the recipient of the action (design); 
the method of approach, i.e., the mapping of the concepts into the physical reality, is the 
means of achieving the action (design), and through optimization becomes the most 
effective means of achieving this result.  The designer or design team is the agent, and 
finally, the constraints, extrinsic, intrinsic, and human, contain and localize the design for 
a particular time and place. 
 
Implicit therefore in the structure of the millennium sphere are not only some of the exact 
relationships that the sciences of the quadrivium established, but the very structure of the 
trivium and of the process through which the millennium sphere came to be.  More than a 
mere image, it takes on true iconic value, becoming a window opened on the creative 
process and the mystery and power of the Word. 
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Appendices 

 
 
Table 1 and Table 2: 
 
Due to the high symmetry existing in the regular polyhedra, the values of the 
trigonometric ratios of the internal angle and its half often occur in the study of their 
geometry.  We have thought helpful to list in table 1 and 2 the sine, cosine, and tangent of 
these angles.  These values apply mutatis mutandis to the stellated forms as well. 
 
 
Table 3: 
 
Table 3 gives the relationships between edges of the regular convex polyhedra and their 
value as a function of the common circumradius. 
 
 
Table 4: 
 
Table 4 summarized the study of the growth of the stellated figure. 
 
Circumradius and Edge Relationships and Edge Relationships 
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Table 4:  Table of Stellation Growth Factors 
 

Dodecahedron: 
 

First stellation (dod. SSD) 

gd 1

Rs

R 3
2

cos
Di

2

sin
Ii

2

1.777  

 
Second stellation (SSD GD) 

 
gd 2 1   (same circumsphere) 

 
Third stellation (GD GSD) 

 

gd 3

RG

RS

3
1

2

sin
Ii

2

sin
Di

2

2.3839

                                    
cos

Ii

2

sin
Ii

2

 

 
Overall Growth Factor (dod. GSD) 

 

Gd

RG

R

RG

RS

RS

R
3

    
1

tan
Ii

2
tan

Di

2

    2 1 2 5 4.2360
 

 
From insphere convex dod. (& icos.) radius r to SSD (& GD) circumsphere RS  

 

g d
RS

r
5 2.2360 

 
From enveloping icosahedron insphere r’ to GSD circumsphere RG  

 

g d 3

RG

r 
3 
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From r to RG  
 

RG

r

RG

RS

RS

r
3

1

2
5 5 sin

Ii

2
 

1

sin
Di

2

3  

2
sin

2
cos53 ii II

 

RG

r
5

sin
I i

2

sin
Di

2

5.330  

 
Icosahedron: 

 
First regular stellation (convex icosahedron, circumsphere R GI) 

 

GI

8
8 1 4.944  
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Circumradius and Edge Relationships 

 
  
The relationships given on page 7 are derived here for each of the five regular convex 
polyhedra. 
 
 

1. Cube: 
 
 
 

AB = a 
 
AC = a 2  
 

BC = 2R  = (a 2)2 a2 a 3  
 

      R = 
a

2
3  

 

and   a
2 3

3
R 

 
fig. 1Ap  

 
  

2. Tetrahedron: 
 

The tetrahedron having the same 
circumsphere as the  cube and therefore the 
same circumradius is ABCD.  Let the edge of 
the tetrahedron be . aT

 
aT  = aC 2 where aC  = cube edge. 

 
      Since R is the same as that of the cube 
 

       R
aC

2
3  

 

Replacing aC  by  aC

aT

2
aT

2

2
 

fig. 2Ap 
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    R aT

6

4
a

6

4
 

 

     a
2

3
6R  

 
 

3. Octahedron: 
 

AO R

AB a

a 2R

 

       

     and        R
a

2
2  

 
 

4. Dodecahedron: 

fig. 3Ap 

fig. 4Ap 

 
Euclid constructed the dodecahedron on the basis of the cube as detailed by Heath (op. 
cit. p. 253).  Indeed, consideration of a dodecahedron model (fig. 5 Ap.) readily shows 
that a dodecahedron can be seen as a cube on the faces of which a roof-like structure 
would be erected, the edges of the cube being the diagonals of the pentagonal faces of 
the dodecahedron.  Further examination will show that, at each vertex, two such 
diagonals converge to form, with those of the other two pentagonal faces constituting 
that vertex, two sets of three mutually perpendicular lines determining the corners of 
the two cubes that can be traced on the dodecahedron model.  One such set is AB, CB, 
DB.  To prove that they are mutually perpendicular, ie., to show that ABDEHCGH is a 
cube, we note that ABDE must be a square since it has: 
 

4 equal sides (diagonals of the pentagonal faces of the 
dodecahedron) 
4 equal angles by symmetry 
furthermore in a quadrilateral figure the sum of the 

angles is 2 , each angle is therefore equal to 
2

 
fig. 5Ap 

 
The same will obviously obtain for the other faces such as BCHD etc., making     
ABDEHCGH a cube. The dodecahedron will include five such cubes. 

 
This results immediately from the fact that there are five diagonals in a pentagonal 
face. The total number of diagonals in the whole dodecahedron is therefore 5  12 = 

60 and since each cube has 12 edges, the number of cubes must be 
60

12
5. 
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fig. 45fig. 45
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One can also reason that there are 20 vertices in the dodecahedron while each cube has 
8.  Each vertex of the dodecahedron is common to a pair of cube corners.  That pair of 
cubes has another common corner diametrically opposite. 

 
The first cube inscribed in the dodecahedron will therefore leave 20 – 8 = 12 free 
vertices. 

 
The second cube having a pair of corners common with the first one will occupy 8 – 2 
= 6 new vertices, leaving 12 – 6  = 6 free vertices. 

 
The third cube will leave 6 – 2 = 4 free vertices 

 
the fourth 4 – 2 = 2 

 
and the fifth 2 – 2 = 0 

 
so that the total number of cubes will be 5 as determined previously. 
 
 
Now, letting  be the edge of the cube (diagonal of the dodecahedron pentagonal 
face) and  the edge of the dodecahedron (side of the pentagon), and  of the golden 
ratio, we can write:  

ac

ad

 
      ac ad  
 
 

    or  ad

ac  

 
 

    since  ac

2 3

3
R  

 
 

    we have ad

2

3

3
R  

 
 

    or  ad

3

3
( 5 1)R  

 
 

       R
3

2 2
ad  
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       3
1 5

4
ad  

 
 
A  more analytical method can of course be established.  Referring to fig. 45, it will be 
observed that the intersphere, radius ri   (as described on p. 35), passes through points P 
and L. 
 
      OP OL ri  
 

Furthermore    CL
a

2
 

 
and PC is the edge view of a pentagonal face of the dodecahedron show- 

 ing the height of the pentagon in true length (see figs. 6 Ap. and 7 Ap.) 
  
 

PC h  
 

Point C is on the circumsphere so that 
 
      OC R  
 

      PC ri

a

2
 

 

               h2 ri

2
(ri

a

2
)2    (1) 

 
fig. 6Ap As can be seen from fig. 66 (p. 113), CD on fig. 

7 Ap. is the pentagon diagonal 
 

  CD a a
1 5

2
 

 
so that 
 

    PC2 a2 2 a2

4
 

 

                     = a2( 2 1

4
)                                    

fig. 7Ap 
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PC h a 2 1

4  

           

               a
3

4
    

 
 

      h
a

2
5 2 5    (2) 

 
       
 Replacing in (1) by (2) 
 

     r
i

2
(ri

a

2
)2 a2

4
(2 5 5) 

 
 or, rearranging: 
 

     ri

2 a

2
ri

a2

4
( 5 2) o   (3) 

 
Solution to this quadratic will yield ri f (a)  which, introduced into (4), below, 
will in turn yield the sought-for relation between R and a. 

 

     R ri

2 a2

4
    (4) 

 
    Let  ( 5 2)  
 

    Then r
a

i

2

2
ri

a2

4
o  

 

     
ri

1

2

a

2

a2

4
4

a2

4

   

    
     

     ri

a

4
1 1 4  
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    but 1 4  
 
 

     ri

a

4
1  

 
 

     ri

a

4
5 3     (5) 

 
 
 That 1 4   may  appear strange at first but this is nevertheless easily 

 shown by expansion in terms of  where 
 
     

    
1 5

2
 

 
 
   Then 5 1 2  
 
   and 5 2 2 1 
 
   or          2 1    (6) 
 
   so that   1 4 1 4(2 1)  
 

               5 8   
 
 
 We recognize 5 and 8 as consecutive terms in the Fibonacci series and 
 recalling that the powers of  are expanded in terms of the successive pairs 
 of terms of that series 
 
    i.e. n fn 1 fn  
 
    
   we see that  5 8 6  
 

  since 8 is the 6th term of the Fibonacci series and 5 the  
   preceding term. 
 
 

     1 4 6 3  
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    But 3 2 ( 1)  
 

           2   
 

           ( 1)   
 
            2 1 
 
 
     1 4 2 1   (7) 
 
 
 and from (6) we see that 
 
     1 4     Q.E.D. 
 
 
  
 It can also be verified that if we assume 
 
     1 4  
 
    then 1 4 2  
 
    or  2 4 1 0  
 

  and therefore            2 5   
 
 
   as per our assumption, so that we can write directly, taking 
   the positive root 
 
 

     ri

a

4
1  

 

        
a

4
5 3  

 
 
 Returning now to equation (4) and replacing with (5), we obtain in turn: 
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     R ri

2 a2

4
 

 
 

     ri

2 a2

16
5 3

2

 

 
 

          
a2

8
7 3 5  

 
 

          ri

2 a2

4

a2

4

7 3 5

2
1  

 
 

            
3a2

4

3 5

2
 

 
 

         R
3a2

4

3 5

2
 

 
 

             
a

2
3

3 5

2
 

 
 
 again, expanding in terms of  
 
 

     
3 5

2

1 5

2

2

2
1 2  

 
 

     R
a

2
3 2    

 
 

     R
a

2
3     (8) 
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a

2
3

1 5

2
 

 
 

       R
a 3(1 5)

4
   (9) 

 
 
 Alternatively, from (8) we obtain 
 
 

     a
2R

3
2

3

3

1
R  

 
 

    But 
1 5 1

2
 

 
 

       a
3

3
( 5 1)R   (10) 

 
 
 Note that, from fig. 45, one can write directly 
 
 

     
a

2
Rsin

Di

2
 

 
 
 and since we established that 
 
 

     sin
Di

2

1

3
 

 
 
 equations (9) and (10) follow immediately. 
 

However, the trigonometric functions of the internal angles of the polyhedra were 
established assuming the a and R relationships as established (p. 7).  Our last result 
therefore confirms the previous developments regarding these functions. 

 



 180

5. Icosahedron: 
 

Referring to fig. 56, it will be seen that the intersphere (c.f. p. 35) passes through 
points A  and C so that: 
 
      OA OC ri  
 
 
  Furthermore 
 

      A P
a

2
 

 
 
  and PC, height of a triangular face of the icosahedron is: 
 
 

      PC a
3

2
 

 
 
  Point P is on the circumsphere so that: 
 
        
      OP R  
 
 
  We can therefore write: 
 
 

in triangle OA P : 
 
 OA 

2
A P 2 OP2  

 
 

     or ri

2 a2

4
R2    (11) 

 
 

in triangle : CPH '
 
       222 '' PCCHPH
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fig. 56
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      or ri

2
(ri

a

2
)2 3

4
a2  

 
 

      i.e. ri

2 a

2
ri

a2

4
0  

 
 

      ri

a

4
(1 5)  

 
 

     or ri

a

2
 

 
 

We can remark in passing that the ratio of ri  to 
a

2
 is  and therefore that the rectangle 

 is a golden rectangle and that consequently the same will obtain for , as 
shown in fig. 26.  Similarly, the duality of icosahedron and dodecahedron ensures that 
rectangle A 

OPHA ' LPFM

B F E  on fig. 45 is a golden rectangle, again as shown on fig. 25B. 
 
 Replacing in (11) and taking the square root: 
 
 

      R ri

2 a2

4
 

 
 

          
a

2
2 1 

 
 

    or  R
a

2
2  

 
 

    with  2
5 5

2
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    and finally R
a

4
2(5 5)    (12) 

 
 

    Therefore a
4

2(5 5 )
R  

 
 

    Multiplying top and bottom by 5 5 : 
 
 

      a
10

5
5 5R    (13) 

 
 
Again, similarly to the case of the dodecahedron, we have for the icosahedron, directly 
from fig. 56 
 

      DF OF sin
Ii

2
 

 
 

     or 
a

2
Rsin

I i

2
 

 
 
  And, remarking that 
 
 

      sin
I i

2

1

2
 

 
  
we readily obtain equations (12) and (13), again confirming our previous results.  

 



184 

 
 
 

Figure Credit 
 
 
 
 
Figs 2; 3; 19A through 23A; 72A:  Models and Slides by Astrid Fitzgerald. 
 
Figs. 25B and 26 from H.E. Huntley:  The Divine Proportions, Dover, New York 1970 
 
Fig. 29 after J. Kappraff:  Connections, McGraw-Hill, New York 1992 
 
Figs. 31; 32; 35; 36; 37; 39; 40; 41; 46; 47; 53; 57; 60; 62 from P. Cromwel: Polyhedra, 
Cambridge 1997 
 
Figs. 74 and 88:  Models and photos by Kaetan Hanansen 
 

All other figures drawn originally by the author and redone on the computer by Marcin 
Balicki, who was also responsible for the overall book design. 


